Bi-Level Programming Model for the Design of a Municipal Solid Waste Management Network by Holding Tenders

Document Type : Original Article


1 MA Student, Iran University of Science and Technology.

2 Assistant Professor, Iran University of Science and Technology.


In this study, the design of a network for municipal solid waste management has been studied from the viewpoint of an organization (e.g. Municipality) which collects different types of waste from all over the city and pays waste generation points in exchange for waste. Determining purchase price for waste and forming outsourcing policies are matters to be decided upon. In case of outsourcing, auction will be held and the private company who their business is recycling and composting can participate by bidding, which results in the selection of an organization or non-outsourcing. The problem is modelled as a bi-level model, in the first level, Municipality decides as the leader on outsourcing, and if outsourcing is agreed upon, a company is selected. In the second level, bidders compete as followers in the auction for receiving more waste from the organization and offer prices.


1. Achillas, D.A., Vlachokostas, CH., Moussiopoulosc, N., Banias, G., & Triantafillou, D. (2012). A multi-objective decision-making model to select waste electrical and electronic equipment transportation media. Resources, Conservation and Recycling, 66, 76-84.
2. Allende, G. B., & Still, G. (2013). Solving bi-level programs with the KKT-approach. Mathematical programming, 138(1-2), 309-332.
3. Asefi, S.L., & Lim, S. (2015). A mathematical model for the municipal solid waste location-routing problem with intermediate transfer stations. Australasian Journal of Information Systems, 19, 21-35.
4. BautistaJ., & Pereira, J. (2006). Modeling the problem of locating collection areas for urban waste management. An application to the metropolitan area of Barcelona. Omega, 34, 617–629.
5. Berglund, P. G., & Kwon, C. (2014). Robust facility location problem for hazardous waste transportation. Networks and Spatial Economics, 14(1), 91-116.
6. Bocken, N., Short, S., Rana, P., & Evans, S. (2014). A literature and practice review to develop sustainable business model archetypes. Journal of Cleaner Production, 65, 42-56.
7. Buhrkal, A.L., & Ropke, S. (2012). The waste collection vehicle routing problem with time windows in a city logistics context. Procedia - Social and Behavioral Sciences, 39, 241-254.
8. Das, A.H.C. (2011). Designing a reverse logistics network for optimal collection, recovery and quality-based product-mix planning. Int. J. Production Economics, 135, 209-221.
9. Deng, L.M., Tian, F., & Cai, J. )2011(. An Optimal Model and Its Algorithm for Multi-echelon MSW Recycling Network Design.  24-25 Sept. 2011, (pp 254-259) Computer Engineering and Management Sciences (ICM), 2011 International Conference.
10. Eiselt, V.M. (2013). A bi-objective model for the location of landfills for municipal solid waste. European Journal of Operational Research, 235, 187-194.
11. ErkutE., & Neuman, S. (2003). Analytical models for locating undesirable facilities. European Journal of Operational Research, 40, 275-291.
12. Ezequiel, J., Ponce-Ortega. J., Betzabe González-Campos, J., Serna-Gonzáleza, M., & El-Halwagi, M. (2013). Optimal planning for the sustainable utilization of municipal solid waste. Waste Management, 33, 2607-2622.
13. Ezequiel, J., Ponce-Ortega. J., Betzabe González-Campos, J., Serna-Gonzáleza, M., & El-Halwagi, M. (2014). Optimal Planning of Supply Chains for Multi-Product Generation from Municipal Solid Waste. Chemical engineering transaction, 42, 55-60.
14. Faccioa, M., Persona, A., & Zanin, G. (2011). Waste collection multi objective model with real time traceability data. Waste Management, 31, 2391-2405.
15. Ghiani, G., Laganà, D., Manni, E., & Triki, C. (2012). Capacitated location of collection sites in an urban waste management system. Waste management, 32(7), 1291-1296.
16. Ghiani, G., Manni, A., Manni, E., & Toraldo, M. (2014). The impact of an efficient collection sites location on the zoning phase in municipal solid waste management. Waste Management, 34(11), 1949-1956.
17. Giusti, L. (2009). A review of waste management practices and their impact on human health. Waste management, 29(8), 2227-2239.
18. Gupta, A., & Sharma, D. C. (2011). Integer programming model for integrated planning of solid waste management in Jaipur. International Journal of Scientific & Engineering Research, 2(3), 115-124.
19. Lee, C. K. M., Yeung, C. L., Xiong, Z. R., & Chung, S. H. (2016). A mathematical model for municipal solid waste management–A case study in Hong Kong. Waste Management.
20. Mavrotas, G., Gakis, N., Skoulaxinou, S., Katsouros, V., & Georgopoulou, E. (2015). Municipal solid waste management and energy production: Consideration of external cost through multi-objective optimization and its effect on waste-to-energy solutions. Renewable and Sustainable Energy Reviews, 51, 1205-1222.
21. Ng, W. P. Q., Lam, H. L., Varbanov, P. S., & Klemeš, J. J. (2014). Waste-to-energy (WTE) network synthesis for municipal solid waste (MSW). Energy Conversion and Management, 85, 866-874.
22. Peltola, T., Aarikka-Stenroos, L., Viana, E., & Mäkinen, S. (2016). Value capture in business ecosystems for municipal solid waste management: Comparison between two local environments. Journal of Cleaner Production, 137, 1270-1279.
23. Rasouli, R., Zamaheni, M., & Jamshidi, A. (2012). Forecasting Model Designing of Economic Firm’s Performance in Competitive Environment. Journal of Industrial Management Perspective, 2(7), 29-44 (In Persian).
24. Sadjadi, S. J., Soltani, R., & Eskandarpour, A. (2014). Location based treatment activities for end of life products network design under uncertainty by a robust multi-objective memetic-based heuristic approach. Applied Soft Computing, 23, 215-226.
25. Samanlioglu, F. (2013). A multi-objective mathematical model for the industrial hazardous waste location-routing problem. European Journal of Operational Research, 226(2), 332-340.
26. Sodhi, M. S., & Reimer, B. (2001). Models for recycling electronics end-of-life products. OR-Spektrum, 23(1), 97-115.
27. Soltanian Telkabadi, H., Mohaghar, A., & Sadeghimoghadam, M. R. (2016). Pricing-Policy Analysis of Petrochemical Feed-Stock through Dynamic Systems Approach. Journal of Industrial Management, 5(20), 59-78 (In Persian).
28. Taleizadeh, A., & Mohammadi, R. (2015). Optimizing the Selling Price and Advertising Cost in a Two Layers Supply ChainIncluding a Manufacturer and Two Retailers. Journal of Industrial Management Perspective, 5(18), 107-127 (In Persian).
 29. Tavares, G., Zsigraiová, Z., & Semiao, V. (2011). Multi-criteria GIS-based siting of an incineration plant for municipal solid waste. Waste management, 31(9), 1960-1972.
30. Vadenbo, C., Hellweg, S., & Guillén-Gosálbez, G. (2014). Multi-objective optimization of waste and resource management in industrial networks–Part I: Model description. Resources, Conservation and Recycling, 89, 52-63.
31. Vahdani, B., & Naderi-Beni, M. (2014). A mathematical programming model for recycling network design under uncertainty: an interval-stochastic robust optimization model. The International Journal of Advanced Manufacturing Technology, 73(5-8), 1057-1071.
32. Von Stackelberg, H. (1954). Marktform and Gleichgewicht Springer-Verlag, Berlin, 1934. engl. transl.: The Theory of the Market Economy.
33. Wu, C. B., Huang, G. H., Li, W., Xie, Y. L., & Xu, Y. (2015). Multistage stochastic inexact chance-constraint programming for an integrated biomass-municipal solid waste power supply management under uncertainty. Renewable and Sustainable Energy Reviews, 41, 1244-1254.
34. Xie, Y., Lu, W., Wang, W., & Quadrifoglio, L. (2012). A multimodal location and routing model for hazardous materials transportation. Journal of hazardous materials, 227, 135-141.
35. Xu, Y., Huang, G. H., Cheng, G. H., Liu, Y., & Li, Y. F. (2014). A two-stage fuzzy chance-constrained model for solid waste allocation planning. Journal of Environmental Informatics, 24(2), 101-110.
36. Xue, W., Cao, K., & Li, W. (2015). Municipal solid waste collection optimization in Singapore. Applied Geography, 62, 182-190.
37. Ye, J. J. (2006). Non differentiable multiplier rules for optimization and bi-level optimization problems. SIAMJ. Optim. 15, 252274 (2004) 14. Ye, JJ: Constraint qualifications and KKT conditions for bi-level programming problems. Math. Oper. Res, 31, 811-824.
38. Ye, L., Ye, C., & Chuang, Y. F. (2011). Location set covering for waste resource recycling centers in Taiwan. Resources, Conservation and Recycling, 55(11), 979-985.
39. Zhang, X., & Huang, G. (2014). Municipal solid waste management planning considering greenhouse gas emission trading under fuzzy environment. Journal of environmental management, 135, 11-18.
40. Zhang, Y. M., Huang, G. H., & He, L. (2011). An inexact reverse logistics model for municipal solid waste management systems. Journal of Environmental Management, 92(3), 522-530.
41. Zhang, Y., Huang, G. H., & He, L. (2014). A multi-echelon supply chain model for municipal solid waste management system. Waste management, 34(2), 553-561.