1. Adeli, M. & Zandie, M. (2013). Proposing a multi-objectives simulation-optimization approach for an integrated sourcing and inventory model. Journal of Industrial Management Perspective, 11: 89-110 (In Persian).
2. Amaran, S. & Sahinidis, N. (2016). Simulation optimization: a review of algorithms and applications, Ann Oper Res, 240: 351–380.
3. Badakhshan, E., Pishvaei, S. & Sahebi, H. (2016). An optimization model based on simulitanion to integrated pllaning for cash and physical follows in supply chain. Journal of Industrial Management Perspective, 21: 31-51 (In Persian).
4. Berman, O. & Kim, E. (1999). Stochastic models for inventory management at service facilities. Stat Stoch Model. 15(4): 695–718.
5. Berman, O. & Kim, E. (2001). Dynamic order replenishment policy in internet-based supply chains. Math Meth Oper Res, 53: 371–390.
6. Berman, O. & Sapna, KP. (2000). Inventory management at service facilities for systems with arbitrarily distributed service times. Comm Stat Stoch Model, 16(3, 4): 343–360.
7. Berman, O. & Sapna, KP. (2002). Optimal service rates of a service facility with perishable inventory items. Naval Res Logist, 49: 464– 482.
8. Davoodi, M., Jolai, F. (2015). Design a simulation model for a multi-echelon and multi-products inventory system and comparison with elit models. Journal of Industrial Management Perspective, 19: 9-38 (In Persian).
9. Deepak, T. G., Krishnamoorthy, A., Narayanan, V. C. & Vineetha, K. (2008). Inventory with service time and transfer of customers and inventory. Ann Oper Res. 160: 191–213
10. Hlioui, R., Gharibi, A. & Hajji, A. (2015). Integrated quality strategy in production and raw material replenishment in a manufacturing-oriented supply chain. Int J Adv Manuf Technol. 7: 1-14.
11. Kochel, P. & Nielander, U. (2005). Simulation-based optimization of multi-echelon inventory systems. International Journal of Production Economics, 93-94(1): 505-513.
12. Peidro, D., Mula, J., Poler, R. & F. C. Lario. (2009). Quantitative Models for Supply Chain planning under uncertainty: A review. International Journal of Advanced Manufacturing Technology, 43: 400-420.
13. Razavi, H., Amiri, M. & Seifbarghi, M. (2013). Application of response surface methodology in optimization of a multi-echelon inventory system. Journal of production and operation management. 4(7): 41-54.
14. Rivera Gomez, H., Gharbi, A. & Kenné, JP. (2013). Joint control of production, overhaul, and preventive maintenance for a production system subject to quality and reliability deteriorations. Int J Adv Manuf Technol, 21: 1–20.
15. Saffari, M. & Haji, R. (2009). Queuing system with inventory for two echelon supply chain. CIE Int Conference: 835–838
16. Saffari, M. & Haji, R. (2011). A queuing system with inventory and mixed exponentially distributed lead times. Int J Adv Manuf Technol, 53: 1231–1237.
17. Sajadi, S. M., Seyed Esfahani, M. M. & Sörensen, K. (2011). Production control in a failure-prone manufacturing network using discrete event simulation and automated response surface methodology. Int J Adv Manuf Technol, 53(1–4): 35–46.
18. Schwarz, M., Sauer, C., Daduna, H., Kulik, R. & Szekli, R. (2006). M/M/1 queuing systems with inventory. Queueing Syst 54: 55–78.
19. Schwarz, M. & Daduna, H. (2006). Queuing systems with inventory management with random lead times and with backordering. Math Meth Oper Res, 64: 383–414.
20. Seifbarghi, M., Amiri, M. & Heidari, M. (2008). Estimation of cost function in a two echelon inventory system with lostsale shortage using regrestion. Journal of industrial engineering. 1: 1-10.
21. Tsai, S. & Chen, S. (2016). a Simulation-Based Multi-Objective Optimization Framework: A Case Study on Inventory Management, Omega, 240: 351–380.
22. Ye, W. & You, F. (2016). A computationally efficient simulation-based optimization method with region-wise surrogate modeling for stochastic inventory management of supply chains with general network structures. Computers and Chemical Engineering, 87: 164–179.
23. Zhao, N. & Lian, Z. (2011). A queuing-inventory system with two classes of customers. Int. J. Production Economics 129: 225–231