1 PhD Student, Alzahra University.

2 Associate Professor, Alzahra University.


In this paper, we study the facility location problem in three-echelon supply chain, including plants, warehouses and retailers. Different types of products are transported through different modes of transportation between facilities of the network. Today, one of the most important challenges in organizations is controlling greenhouse gas emissions across the grid; however, given the complexity of green supply chain problems, providing a solvable model is important. In this study, in order to simplify the mathematical model, only the CO2 released in the supply chain network is considered. Each facility, according to demand, creates a certain amount of pollution, and the pollution depends on the mileage. The proposed model aims to minimize the total network cost and CO2 emissions. The proposed solving method for solving the model is multi-choice goal programming method. In order to evaluate the efficiency of the proposed method, the results were compared with the results of the 14خµ"> -constraint method and sensitivity analysis of the necessary parameters was also performed.


1. Amiri, A. (2006). Designing a distribution network in a supply chain system: Formulation and efficient solution procedure. European Journal of Operational Research171(2), 567-576.
2. Arabzad, S. M., Ghorbani, M., & Ranjbar, M. J. (2017). Fuzzy Goal Programming for Linear Facility Location-Allocation in a Supply Chain; the Case of Steel Industry. International Journal of Research in Industrial Engineering, 6(2), 90-105.
3. Bal, A., & Satoglu, S. I. (2018). A Goal Programming Model for Sustainable Reverse Logistics Operations Planning and an Application. Journal of Cleaner Production.
4. Bayani Majd, A., Noori, S., Yaghoubi, S., Mohammadi, A. (2017). Green supply chain mathematical modeling for construction projects considering project scheduling. Journal of Industrial Management Perspective, 24, 123-156 (In Persian).
5. Chang, C. T. (2008). Revised multi-choice goal programming. Applied Mathematical Modelling32(12), 2587-2595.
6. Chang, C. T. (2011). Multi-choice goal programming with utility functions. European Journal of Operational Research215(2), 439-445.
7. Chibeles-Martins, N., Pinto-Varela, T., Barbosa-Póvoa, A. P., & Novais, A. Q. (2016). A multi-objective meta-heuristic approach for the design and planning of green supply chains-MBSA. Expert Systems with Applications, 47, 71-84.
8. Farahani, R. Z., Asgari, N., Heidari, N., Hosseininia, M., & Goh, M. (2012). Covering problems in facility location: A review. Computers & Industrial Engineering62(1), 368-407.
9. Hakimi, S. L. (1964). Optimum locations of switching centers and the absolute centers and medians of a graph. Operations research12(3), 450-459.
10. Hugo, A., & Pistikopoulos, E. N. (2005). Environmentally conscious long-range planning and design of supply chain networks. Journal of Cleaner Production13(15), 1471-1491.
11. Khishtandar, S., Zandieh, M., Dorri, B., Ranai Saadat, S.A. (2016). Green supply chain mathematical modeling for construction projects considering project scheduling. Journal of Industrial Management Perspective23, 29-54 (In Persian).
12. Kratica, J., Dugošija, D., & Savić, A. (2014). A new mixed integer linear programming model for the multi-level uncapacitated facility location problem. Applied Mathematical Modelling38(7), 2118-2129.
13. Mavrotas, G. (2009). Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Applied mathematics and computation213(2), 455-465.
14. Melkote, S., & Daskin, M. S. (2001). Capacitated facility location/network design problems. European journal of operational research129(3), 481-495.
15. Melo, M. T., Nickel, S., & Saldanha-Da-Gama, F. (2009). Facility location and supply chain management–A review. European journal of operational research196(2), 401-412.
16. Neto, J. Q. F., Walther, G., Bloemhof, J., Van Nunen, J. A. E. E., & Spengler, T. (2009). A methodology for assessing eco-efficiency in logistics networks. European Journal of Operational Research193(3), 670-682.
17. Oliver, R. K., & Webber, M. D. (1982). Supply-chain management: logistics catches up with strategy. In: Christopher, M.G. (Ed.), Logistics, The Strategic Issue. Chapman & Hall, London.
18. Pishvaee, M. S., & Razmi, J. (2012). Environmental supply chain network design using multi-objective fuzzy mathematical programming. Applied Mathematical Modelling36(8), 3433-3446.
19. Pishvaee, M. S., Razmi, J., & Torabi, S. A. (2012). Robust possibilistic programming for socially responsible supply chain network design: A new approach. Fuzzy sets and systems206, 1-20.
20. Raad, A., Sadeghi, A., Ghasemi, B. (2016). Two-echelon mathematical modeling with different manufacturers and multiple transportation modes in the supply chain. Journal of Industrial Management Perspective23, 77-100 (In Persian).
21. Rad, R. S., & Nahavandi, N. (2018). A novel multi-objective optimization model for integrated problem of green closed loop supply chain network design and quantity discount. Journal of Cleaner Production.
22. Rahmati, S. H. A., Hajipour, V., & Niaki, S. T. A. (2013). A soft-computing Pareto-based meta-heuristic algorithm for a multi-objective multi-server facility location problem. Applied Soft Computing13(4), 1728-1740.
23. Ratnayake, M. N., Kachitvichyanukul, V., & Luong, H. T. (2019). A Multi-Objective Model for Location-Allocation Problem with Environmental Considerations. In Environmental Sustainability in Asian Logistics and Supply Chains (pp. 205-217). Springer, Singapore.
24. Rezaee, A., Dehghanian, F., Fahimnia, B., & Beamon, B. (2017). Green supply chain network design with stochastic demand and carbon price. Annals of Operations Research, 250(2), 463-485.
25. Saffar, M., & Razmi, J. (2014). A new bi-objective mixed integer linear programming for designing a supply chain considering co2 emission. Uncertain Supply Chain Management2(4), 275-292.
26. Sarkar, B., & Majumder, A. (2013). A study on three different dimensional facility location problems. Economic Modelling30, 879-887.
27. Sarkar, B., Ganguly, B., Sarkar, M., & Pareek, S. (2016). Effect of variable transportation and carbon emission in a three-echelon supply chain model. Transportation Research Part E: Logistics and Transportation Review, 91, 112-128.
28. Shoul, A., Amiri, M., Olfat, L., Khalili Damghani, K. (2013). Multi-echelon and multi-product supply chain network design using combinational approach of multi-objective mathematical programming and data envelopment analysis. Journal of Industrial Management Perspective, 14, 117-137 (In Persian).
29. Talaei, M., Moghaddam, B. F., Pishvaee, M. S., Bozorgi-Amiri, A., & Gholamnejad, S. (2016). A robust fuzzy optimization model for carbon-efficient closed-loop supply chain network design problem: a numerical illustration in electronics industry. Journal of Cleaner Production113, 662-673.
30. Toro, E. M., Franco, J. F., Echeverri, M. G., & Guimarães, F. G. (2017). A multi-objective model for the green capacitated location-routing problem considering environmental impact. Computers & Industrial Engineering, 110, 114-125.
31. Weber, A., 1909. Uber Den Standort der Industrien, 1. Teil: Reine Theorie des Standortes.Tubingen, Mohr, Germany.
32. Wu, L. Y., Zhang, X. S., & Zhang, J. L. (2006). Capacitated facility location problem with general setup cost. Computers & Operations Research33(5), 1226-1241.