1. Aboutalebi, R., Najafi, A., & Ghorashi, B. (2012). Solving multi-mode resourceconstrained project scheduling problem using two multi objective evolutionary algorithms. African Journal of Business Management, 6(11), 4057-4065.
2. Amoozad Mahdiraji, H., Mokhtarzade, N., & Radmand, S. (2017). A Hybrid Model of Grey Fuzzy Goal Programming in Project Time, Cost, Risk and Quality Tradeoff. Journal of Industrial Management Perspective, 27, 47-80 (In Persian).
3. Błażewicz, J., & Finke, G. (1994). Scheduling with resource management in manufacturing systems. European Journal of Operational Research, 76(1), 1-14.
4. Brucker, P., Drexl, A., Möhring, R., Neumann, K., & Pesch, E. (1999). "Resource-constrained project scheduling: Notation, classification, models and methods". European Journal of Operational Research. 112, 3-41.
5. Chicano, F., Luna, F., Nebro, A. J., & Alba, E. (2011, July). Using multi-objective metaheuristics to solve the software project scheduling problem. In Proceedings of the 13th annual conference on Genetic and evolutionary computation (pp. 1915-1922). ACM.
6. Cho, S. H., & Eppinger, S. D. (2005). A simulation-based process model for managing complex design projects. IEEE Transactions on engineering management, 52(3), 316-328.
7. Chen, W.-N., & Zhang, J. (2012). Scheduling multi-mode projects under uncertainty to optimize cash flows: A monte carlo ant colony system approach. Journal of Computer Science and Technology, 27(5), 950-965.
8. Creemers, S., De Reyck, B., & Leus, R. (2015). Project planning with alternative technologies in uncertain environments. European Journal of Operational Research, 242(2), 465-476.
9. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
10. De Reyck, B., & Leus, R. (2008). R&D project scheduling when activities may fail. IIE transactions, 40(4), 367-384.
11. Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-constrained project scheduling problem. European Journal of Operational Research, 207, 1-14.
12. He, Z., & Xu, Y. (2008). Multi-mode project payment scheduling problems with bonus–penalty structure. European Journal of Operational Research, 189(3), 1191-1207.
13. He, Z., Wang, N., Jia, T., & Xu, Y. (2009). Simulated annealing and tabu search for multi-mode project payment scheduling. European Journal of Operational Research, 198(3), 688-696.
14. Herroelen, W., Van Dommelen, P., & Demeulemeester, E. (1997). Project networks with discounted cash flows: A guided tour through recent developments. European Journal of Operational Research, 100, 97-121.
15. Hosseini, Z. S., Pour, J. H., & Roghanian, E. (2014). A bi-objective pre-emption multimode resource constrained project scheduling problem with due dates in the activities. Journal of Optimization in Industrial Engineering, 15, 15-25.
16. He, Z., Liu, R., & Jia, T. (2012). Metaheuristics for multi-mode capital-constrained project payment scheduling. European Journal of Operational Research, 223(3), 605-613.
17. Homberger, J., & Fink, A. (2017). Generic negotiation mechanisms with side payments–Design, analysis and application for decentralized resource-constrained multi-project scheduling problems. European Journal of Operational Research, 261(3), 1001-1012.
18. Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for resource-constrained project scheduling: An update. European Journal of Operational Research, 174, 2-37.
19. Leyman, P., & Vanhoucke, M. (2016). Payment models and net present value optimization for resource-constrained project scheduling. Computers & Industrial Engineering, 91, 139-153.
20. Leyman, P., & Vanhoucke, M. (2017). Capital-and resource-constrained project scheduling with net present value optimization. European Journal of Operational Research, 256(3), 757-776.
21. Leyman, P., Van Driessche, N., Vanhoucke, M., & De Causmaecker, P. (2019). The impact of solution representations on heuristic net present value optimization in discrete time/cost trade-off project scheduling with multiple cash flow and payment models. Computers & Operations Research, 103, 184-197.
22. Minku, L. L., Sudholt, D., & Yao, X. (2012, July). Evolutionary algorithms for the project scheduling problem: runtime analysis and improved design. In Proceedings of the 14th annual conference on Genetic and evolutionary computation (pp. 1221-1228). ACM.
23. Mamizadeh, F., Sadeghi Moghadam, M.R., & Mehregan, M.R. (2018). Project Classification in Project Portfolio Management using a Multicriteria Hierarchical Discrimination Method. Journal of Industrial Management Perspective, 28, 9-40 (In Persian).
24. Movahedian, O., Esmaeilian, M., Mohaamadi Zanjirani, D. (2016). Project selection and scheduling for resource constrained multi-mode projects to maximize net present value. Journal of Industrial Management Perspective, 20, 79-100 (In Persian).
25. Mika, M., Waligora, G., & Węglarz, J. (2005). Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models. European Journal of Operational Research, 164(3), 639-668.
26. Martins, P. (2017). Integrating financial planning, loaning strategies and project scheduling on a discrete-time model. Journal of Manufacturing Systems, 44, 217-229.
27. Ning, M., He, Z., Jia, T., & Wang, N. (2017). Metaheuristics for multi-mode cash flow balanced project scheduling with stochastic duration of activities. Automation in Construction, 81, 224-233.
28. Özdamar, L., & Dündar, H. (1997). A flexible heuristic for a multi-mode capital constrained project scheduling problem with probabilistic cash inflows. Computers & operations research, 24(12), 1187-1200.
29. Özdamar, L., Ulusoy, G., & Bayyigit, M. (1998). A heuristic treatment of tardiness and net present value criteria in resource constrained project scheduling. International Journal of Physical Distribution & Logistics Management, 28(9/10), 805-824.
30. Russell, A. H. (1970). Cash flows in networks. Management Science, 16(5), 357-373.
31. Rabieh, M., & Fadaei, A. (2016). Amathematical model for robust portfolio selection and solving with multi-objective differential evolution algorithm. Journal of Industrial Management Perspective, 19, 65-90 (In Persian).
32. Sprecher, A., Hartmann, S., & Drexl, A. (1997)." An exact algorithm for project scheduling with multiple modes". OR Spectrum, 19, 195-203.
33. Seifi, M., & Tavakkoli-Moghaddam, R. (2008). A new bi-objective model for a multi-mode resource-constrained project scheduling problem with discounted cash flows and four payment models. Int. J. of Engineering, Transaction A: Basic, 21(4), 347-360.
34. Shafahi, A., & Haghani, A. (2018). Project selection and scheduling for phase-able projects with interdependencies among phases. Automation in Construction, 93, 47-62.
35. Ulusoy, G., & Cebelli, S. (2000). An equitable approach to the payment scheduling problem in project management. European Journal of Operational Research, 127(2), 262-278.
36. Ulusoy, G., Sivrikaya-Şerifoğlu, F., & Şahin, Ş. (2001). Four payment models for the multi-mode resource constrained project scheduling problem with discounted cash flows. Annals of Operations Research, 102(1-4), 237-261.
37. Xiong, J., Yang, K. W., Liu, J., Zhao, Q. S., & Chen, Y. W. (2012). A two-stage preference-based evolutionary multi-objective approach for capability planning problems. Knowledge-Based Systems, 31, 128-139.