A Model for R&D Project Portfolio Selection and Development in LCSI Enterprises

Document Type : Original Article


1 Ph.D, University of Tehran.

2 Professor, University of Tehran.


All Organization face with important issues like objectives, constraints, priorities, policies, opportunities and threats that should be considered in all the key decisions. One of the most important and difficult decisions in organizations, is the project portfolio selection. In today's changing world, survival and continued growth of successful companies depends on developing and manufacturing  new products and services; as a result, Project Portfolio Selection(specially R&D Projects) is critical and necessary for the survival of its business of enterprises. The main problems in the R&D Portfolio selection process can be found in the large number of qualitative and quantitative goals that are often incompatible, the inconsistency in the amount of resources available and in use, experience of managers and decision makers to balance the risk and the timing of projects and the delivery time, etc. In this article a Mathematical model with the disctinction of taking the integration of knowledge and intellectual capital into account is presented and Solved With NSLS, For verifying the proposed model a case study is performed to select the best R&D Project Portfolio for an International LCSI in Iran. The results of the case study that satisfactorily validates the outcome of the model is presented.


1. Abbassi, M., Ashrafi, M., & Tashnizi, E. S. (2014). Selecting balanced portfolios of R&D projects with interdependencies: A Cross-Entropy based methodology. Technovation, 34(1), 54-63.
2. Andrew Davies, I. M. (2014). Project complexity and systems integration: Constructing the London 2012 Olympics and Paralympics Games. International Journal of Project Management32(5), 773–790.
3. Archer NP., G. F. (1999). An integrated framework for project portfolio selection. International Journal of Project Management17(4), 207-216.
4. Badri, M. A. (2001). A combined AHP–GP model for quality control systems. International Journal of Production Economics72(1), 27-40.‏
5. Beaujon G., M. P. (2001). Balancing and Optimizing a Portfolio of R&D Projects. John Wiley & Sons, Inc.
6. Bhattacharyya, R., Kumar, P., & Kar, S. (2011). Fuzzy R&D portfolio selection of interdependent projects. Computers & Mathematics with Applications, 62(10), 3857-3870.
7. Bland, J Martin; Altman, Douglas G;(1997). Statistics notes: Cronbach's alpha, British Medical Journal Publishing Group.
8. Carazo, A. F., Gómez, T., Molina, J., Hernández-Díaz, A. G., Guerrero, F. M., & Caballero, R. (2010). Solving a comprehensive model for multiobjective project portfolio selection. Computers & operations research37(4), 630-639.‏
9. Cheng, C. H., Liou, J. J., & Chiu, C. Y. (2017). A consistent fuzzy preference relations based ANP model for R&D project selection. Sustainability, 9(8), 1352.‏
10. Coldrick S., L. P. (2005). An R&D options selection model for investment decisions. Technovation, 25, 185-193.
11. Cooper, R. G. (1994). Third-Generation New Product Processes. Journal of Production Innovation Management11(1), 3-14.
12. Cooper, R. G. (1999). Portfolio Management for New Product Development. Journal of Product Innovation Management, 331-351.
13. Cooper, R. 2007.Winning Business in new product development: the critical success factors. Research Technology Management50(3), 52-66.
14. Debnath, A., Roy, J., Kar, S., Zavadskas, E. K., & Antucheviciene, J. (2017). A hybrid mcdm approach for strategic project portfolio selection of agro by-products. Sustainability9(8), 1302.‏
15. Englund, R. J. (1999). From Experience: linking Project to Strategy. Production Innovation Management16(1), 52-64.
16. Farsijani H., Fattahi M., Nowrouzi M., (2011). Project Portfolio Selection using PSO, Industrial Management Perspective, 5(3), 27-48 (In Persian).
17. Flyvbjerg, B. B. (2003). Megaprojects and Risk: An Anatomy of Ambition. Cambridge: Cambridge University Press, 13-24.
18. Gareis, R. (2007). The Wiley Guide to Managing Projects. John Wiley & Sons.
19. Gutjahr, W. J. (2015). Project Portfolio Selection Under Skill Development. In J. Z. Christoph Schwindt. Handbook on Project Management and Scheduling, Vol 2, 729-750.
20. Hassanzadeh F., C. M. (2012). A practical R&D selection model using fuzzy pay-off method. Int J Adv Manuf Technology58(1-4), 227-236.
21. Heidenberger k., s. C. (1999). Research and development project selection and resource allocationła review of quantitative modelling approaches. International Journal of Management Review1(2), 197-224.
22. Henriksen A. D., T. A. (1999). A Practical R&D Project-Selection Scoring Tool. IEEE Transactions on Engineering Management, 46(2), 158-170.
23. Hobday M. (2005). The Business of Projects Managing Innovation in Complex Products and Systems. United States of America:Cambridge University Press, 92-102.
24. Hobday, M. (2000). The project-based organisation: an ideal form for managing complex products and systems? Research Policy, 29(7-8), 871-893.
25. Hwang, J. W. (2007). A Fuzzy Set Approach for R&D Portfolio Selection Using a Real Options Valuation Model. Omega, 35(3), 247-257.
26. Iamratanakul, S., Patanakul, P., & Milosevic, D. (2008, September). Project portfolio selection: From past to present. In Management of Innovation and Technology, 2008. ICMIT 2008. 4th IEEE International Conference on, 287-292.‏
27. Jolly, D. (2003). The Issue of Weightings in Technology Portfolio Management. Technovation23(5), 383-391.
28. Marr, B. and K. Moustaghfir (2005). Defining Intellectual Capital: A three-dimensional Approach, Management Decision ,43(9), 1114-1128
29. Meade L. M., P. A. (2002). R&D Project Selection Using the Analytic Network Process. Ieee Transactions On Engineering Management49(1), 59-66.
30. Medaglia, A. L., Hueth, D., Mendieta, J. C., & Sefair, J. A. (2008). A multiobjective model for the selection and timing of public enterprise projects. Socio-Economic Planning Sciences42(1), 31-45.‏
31. Mishra, S. K. (2012). Robust and Constrained Portfolio Optimization using Multiobjective Evolutionary Algorithms. Department of Electronics and Communication Engineering National Institute Of Technology, Rourkela.
32. R. P. Mohanty,(2005).A fuzzy ANP-based approach to R&D project selection: A case study. International Journal of Production Research, 43(24), 5199-5216.
33. PMI. (2010). Project Management Body of Knowledge. Newton Square.
34. Rabieh M., Fadaei A. (2014). Fuzzy Robust Mathematical Model for Project Portfolio Selection and its Solving through Multi Objective Differential Evolutionary Algorithm, Industrial Management Perspective19(3), 65-90 (In Persian).
35. Rick Mitchell, R. P. (2014). Scoring Methods for Prioritizing and Selecting Innovation Projects. Proceedings of PICMET '14: Infrastructure and Service Integration.
36. Salemi Z., Naderi B.,Tavvakoli Moghadam R. (2012). R&D Portfolio Selection Using Goal Programingn in Automotive Industry), Industrial Management Perspective9(3), 147-167 (In Persian).
37. Santamaría L., B.-G. A. (2010). Public selection andfinancing of R&D cooperative projects: credit versus. Research Policy, 39(4), 549–563.
38. Scott, W. L. (2011). Global Projects: Institutional and Political Challenges. Cambridge: Cambridge University Press.
39. Senay Solak, J.-P. B. (2010). Optimization of R&D project portfolios under endogenous uncertainty. European Journal of Operational Research, 207(1), 420-433.
40. Turner, J. (2009). The Handbook of Project-Based Management. London: Mc-Graw Hill.
41. Turner, J. M. (2010). Leadership competency profiles of successful project managers. International Journal of Project Management, 28(5), 437-448.
42. Wacker, J. (1998). A definition of theory: Research guidelines for different theory-building research methods in operations management. Journal of Operations Management, 16(4), 361-385
43. Yu, O. S. (2006). Technology Portfolio Planning and Management. Star Strastegy Group Los Altas.
44. Wenhua Zeng, B C (2015). A New Local Search-Based Multiobjective Optimization Algorithm. Ieee Transactions On Evolutionary Computation,  19(1), 50-73.