- Afshar Najafi, B., & Ghorbani, S. (2020). modeling and solving the problem of location of cross-warehouses and vehicle scheduling in the multi-product supply chain with the possibility of discrete harvesting and delivery. The Journal of Industrial Management Perspective, 11(2), 2-8. (In Persian).
- Ahmadzadeh, E. and Vahdani, B., 2017. A location-inventory-pricing model in a closed loop supply chain network with correlated demands and shortages under a periodic review system. Computers & chemical engineering, 101, pp.148-166.
- Amiri, A., & Fattahi, A. (2015). Provide a fuzzy multi-objective logistics model for distributing relief items and evacuating the injured in times of crisis, 62(2), 63-76 (In Persian).
- Alizadeh, M., Amiri, M., Mustafee, N., & Sumohon, M. (2019). A robust stochastic Casualty Collection Points location problem. European Journal of Operational Research, 279(3), 965-983.
- Balcik, B., & Beamon, B.M. (2008). Facility location in humanitarian relief. International Journal of logistics, 11(2), 101-121.
- Balcik, B., B.M. Beamon, & Smilowitz, K. (2008). Last mile distribution in humanitarian relief. Journal of Intelligent Transportation Systems, 12(2), 51-63.
- Behnamian, J., & Pourmoradkhani, M. (2015). Inventory modeling to deal with natural disasters. Two Quarterly Journal of Crisis Management, 7, 63-77. (In Persian)
- Brotcorne, L., Laporte, G., & Semet, F. (2003). Ambulance location and relocation models. European journal of operational research, 147(3), 451-463.
- Boonmee, C., Arimura, M., & Asada, T. (2017). Facility location optimization model for emergency humanitarian logistics. International Journal of Disaster Risk Reduction, 24, 485-498.
- Caunhye, A.M., Li, M., & Nie, X. (2015). A location-allocation model for casualty response planning during catastrophic radiological incidents. Socio-Economic Planning Sciences, 50, 32-44.
- Caunhye, A.M., X. Nie, & Pokharel S., (2012). Optimization models in emergency logistics: A literature review. Socio-economic planning sciences,. 46(1), 4-13.
- Craggs, R. (2012). Towards a political geography of hotels: Southern Rhodesia, 1958–1962. Political Geography, 31(4), 215-224.
- Foukardi, R., & Talavari, (2021).Optimizing Cash Flow in the Drug Supply Chain: A Risk-Approach Approach. The Journal of Industrial Management Perspective, 11(1), 117-145. (In Persian).
- Hale, T. & Moberg, C.R. (2005). Improving supply chain disaster preparedness. International Journal of Physical Distribution & Logistics Management, 35(3), 195-207.
- Liu, Y., N. Cui, & Zhang J., (2019). Integrated temporary facility location and casualty allocation planning for post-disaster humanitarian medical service. Transportation research part E: logistics and transportation review, 128, 1-16.
- Liu, J.,Jiang,D.,Guo,L.,Nan,J.,Cao,W.,Wang,P., (2020). Emergency material location-allocation planning using a risk-based integration methodology for river chemical spills. Environmental Science and Pollution Research,27(15), 1-14.
- Loree, N. & Aros-Vera, F. (2018). Points of distribution location and inventory management model for Post-Disaster Humanitarian Logistics. Transportation Research Part E: Logistics and Transportation Review, 116, 1-24.
- Mohri, S.S. & Haghshenas, H. (020). An Ambulance Location Problem for Covering Inherently Rare and Random Road Crashes. Computers & Industrial Engineering, 151(1), 3-10.
- Mohagheghi, V., Mousavi, S.M. and Vahdani, B., (2015). A new optimization model for project portfolio selection under interval-valued fuzzy environment. Arabian Journal for Science and Engineering, 40(11), pp.3351-3361.
- Mohagheghi, V., Mousavi, S. M., & Vahdani, B. (2017). Analyzing project cash flow by a new interval type-2 fuzzy model with an application to construction industry. Neural Computing and Applications, 28(11), 3393-3411.
- Mohammadi, S., Darestani, S. A., Vahdani, B., & Alinezhad, A. (2020). A robust neutrosophic fuzzy-based approach to integrate reliable facility location and routing decisions for disaster relief under fairness and aftershocks concerns. Computers & Industrial Engineering, 148, 106734.
- Mousavi, S.M., Antuchevičienė, J., Zavadskas, E.K., Vahdani, B. & Hashemi, H., (2019). A new decision model for cross-docking center location in logistics networks under interval-valued intuitionistic fuzzy uncertainty. Transport, 34(1), 30-40.
23.Nabavi, S.M., Vahdani, B., Nadjafi, B.A. & Adibi, M.A. (2022). Synchronizing victim evacuation and debris removal: A data-driven robust prediction approach. European Journal of Operational Research, 300(2), 689-712.
- Nel, E.-M., du Preez, J.A., & Herbst, B.M. (2009). A pseudo-skeletonization algorithm for static handwritten scripts. International Journal of Document Analysis and Recognition (IJDAR), 12(1), 47-62.
- Niakan, F., Vahdani, B., & Mohammadi, M. (2015). A multi-objective optimization model for hub network design under uncertainty: An inexact rough-interval fuzzy approach. Engineering Optimization, 47(12), 1670-1688.
- Rawls, C.G. & Turnquist, M.A. (2010). Pre-positioning of emergency supplies for disaster response. Transportation research part B: Methodological, 44(4), 521-534.
- Saedinia, R., Vahdani, B., Etebari, F., & Nadjafi, B. A. (2019). Robust gasoline closed loop supply chain design with redistricting, service sharing and intra-district service transfer. Transportation Research Part E: Logistics and Transportation Review, 123, 121-141.
- Salimi, F. & Vahdani, B. (2018). Designing a bio-fuel network considering links reliability and risk-pooling effect in bio-refineries.Reliability Engineering & System Safety, 174, 96-107.
- Liu, Y., N. Cui, & Zhang J. (2019). Integrated temporary facility location and casualty allocation planning for post-disaster humanitarian medical service. Transportation research part E: logistics and transportation review, 128, 1-16.
- Tajani, K., Mohtashami, A., Amiri, M., & Ehtesham, R. (2021). Presenting a robust optimization model to design a comprehensive blood supply chain under conditions of supply and demand uncertainty. The Journal of Industrial Management Perspective, 11(1), 81-116 (In Persian).
- Van Wassenhove, L.N. (2006). Humanitarian aid logistics: Supply chain management in high gear. Journal of the Operational research Society, 57(5), 475-489.
- Vahdani, B., Soltani, M., Yazdani, M., & Mousavi, S. M. (2017). A three level joint location-inventory problem with correlated demand, shortages and periodic review system: Robust meta-heuristics. Computers & Industrial Engineering, 109, 113-129.
- Vahdani, B., Mansour, F., Soltani, M. & Veysmoradi, D. (2019). Bi-objective optimization for integrating quay crane and internal truck assignment with challenges of trucks sharing. Knowledge-Based Systems, 163, 675-692.
- Vahdani, B. (2019). Assignment and scheduling trucks in cross-docking system with energy consumption consideration and trucks queuing. Journal of Cleaner Production, 213, 21-41.
- Vahdani, B., & Ahmadzadeh, E. (2019). Designing a realistic ICT closed loop supply chain network with integrated decisions under uncertain demand and lead time. Knowledge-Based Systems, 179, 34-54.
- Vahdani, B., & Naderi-Beni, M. (2014). A mathematical programming model for recycling network design under uncertainty: an interval-stochastic robust optimization model. The International Journal of Advanced Manufacturing Technology, 73(5), 1057-1071.
- Vahdani, B., Tavakkoli-Moghaddam, R., Zandieh, M. & Razmi, J. (2012). Vehicle routing scheduling using an enhanced hybrid optimization approach. Journal of Intelligent Manufacturing, 23(3), 759-774.
- Vahdani, B. & Zandieh, M. (2010). Selecting suppliers using a new fuzzy multiple criteria decision model: the fuzzy balancing and ranking method. International Journal of Production Research, 48(18), 5307-5326.
- Vahdani, B., Veysmoradi, D., Mousavi, S.M. & Amiri, M. (2022). Planning for relief distribution, victim evacuation, redistricting and service sharing under uncertainty. Socio-Economic Planning Sciences, 80, 101158.
- Vaziri, S., Etebari, F. and Vahdani, B., (2019). Development and optimization of a horizontal carrier collaboration vehicle routing model with multi-commodity request allocation. Journal of Cleaner Production, 224, 492-505.
- Veysmoradi, D., Vahdani, B., Farhadi Sartangi, M., & Mousavi, S. M. (2018). Multi-objective open location-routing model for relief distribution networks with split delivery and multi-mode transportation under uncertainty.Scientia Iranica, 25(6), 3635-3653.
- Zahedi, A., M. Kargari, & Kashan, A.H. (2020). Multi-objective decision-macking model for distribution planning of goods and routing of vehicles in emergency, International Journal of Disaster Risk Reduction, 48(1), 2-10.