Document Type : Original Article


1 Ph.D student, Yazd University.

2 Associate Professor, Yazd University.


In recent years, with the high cost of building large and centralized power plants and the problems of long power transmission lines, the electricity industry has shifted to the use of small and distributed generation near the location of customers. On the other hand, due to environmental problems, some of these distributed products are based on renewable energy, which has a random behavior. Determining the location and capacity of these products at the distribution network level has a great impact on managing financial resources and improving supply chain parameters. In this research, a comprehensive multi-objective and probabilistic model is proposed to determine the installation location, type, and optimal capacity of distributed products at the level of the new electricity supply chain. The ultimate goal of this model is to minimize energy losses, investment and operation costs, unsupplied energy, and environmental pollutants. The proposed model is applied on a 33-region network by MATLAB software and solved in a multi-objective way by a genetic meta-heuristic algorithm with faulty sorting. The final results show the effectiveness of the proposed method in various economic, environmental, and social dimensions of the electricity supply chain.


Main Subjects

1. Asadi, E., Habibi, F., Nickel, S., & Sahebi, H. (2018). A bi-objective stochastic location-inventory-routing model for microalgae-based biofuel supply chain. Applied energy228, 2235-2261.
2. Asgharizadeh, E., Torabi, S. A., Mohaghar, A., & Zare-Shourijeh, M. A. (2019). Sustainable Supply Chain Network Design: A Review on Quantitative Models Using Content Analysis. Environmental Energy and Economic Research, 3(2), 143-176.
3. Bairamzadeh, S., Saidi-Mehrabad, M., & Pishvaee, M. S. (2018). Modelling different types of uncertainty in biofuel supply network design and planning: A robust optimization approach. Renewable energy116, 500-517.
4. Bayatloo, F. (2018). A Two-Stage Chance-Constraint Stochastic Programming Model for Electricity Supply Chain Network Design. International Journal of Industrial Engineering & Production Research29(4), 471-482.
5. Cañas, H., Mula, J., & Campuzano-Bolarín, F. (2020). A General Outline of a Sustainable Supply Chain 4.0. Sustainability12(19), 7978.
6. Dehghani, E., Jabalameli, M. S., Jabbarzadeh, A., & Pishvaee, M. S. (2018). Resilient solar photovoltaic supply chain network design under business-as-usual and hazard uncertainties. Computers & Chemical Engineering111, 288-310.
7. Ding, H., Huang, H., & Tang, O. (2018). Sustainable supply chain collaboration with outsourcing pollutant-reduction service in power industry. Journal of Cleaner Production186, 215-228.
8. Durmaz, Y. G., & Bilgen, B. (2020). Multi-objective optimization of sustainable biomass supply chain network design. Applied Energy272, 115259.
9. Firestone, R.J.L.B.N.L. (2004). DER-CAM natural gas technology data.  Lawrence Berkeley National Lab, available at: http://der. lbl. gov/der-cam/technology-data-archive.
10. Gardiner, M. and Montpelier, V.(2012). Technical Status Report of the Regulatory Assistance Project.
11. Hosseini-Motlagh, S.M., Samani, M.R.G. and Shahbazbegian, V., 2020. Innovative strategy to design a mixed resilient-sustainable electricity supply chain network under uncertainty.Applied Energy280, p.115921.
12. Jabbarzadeh, A., Fahimnia, B., & Rastegar, S. (2017). Green and resilient design of electricity supply chain networks: a multiobjective robust optimization approach. IEEE Transactions on Engineering Management66(1), 52-72.
13. Jabbarzadeh, A., Fahimnia, B., & Sabouhi, F. (2018). Resilient and sustainable supply chain design: sustainability analysis under disruption risks. International Journal of Production Research56(17), 5945-5968.
14. Kabadurmus, O., & Erdogan, M. S. Sustainable, multimodal and reliable supply chain design. Annals of Operations Research, 1-24.
15. Khishtandar, S., 2019. Simulation based evolutionary algorithms for fuzzy chance-constrained biogas supply chain design. Applied Energy236, pp.183-195.
16. Mariam, L., Basu, M., & Conlon, M. F. (2016). Microgrid: Architecture, policy and future trends. Renewable and Sustainable Energy Reviews64, 477-489.
17. Mashayekhi, M., Azar, A., Amiri, M., Safari, H. (2020). Model design of steel consumption chain by ABM methodology. Journal of Industrial Management Perspective11(1), 33-52 (In Persian).
18. Masoumik, S. M., Abdul-Rashid, S. H., Olugu, E. U., & Raja Ghazilla, R. A. (2014). Sustainable supply chain design: A configurational approach. The Scientific World Journal14(2), 35-54.
19. Mehranfar, N., Hajiaghaei-Keshteli, M., & Fathollahi-Fard, A. M. (2019). A novel hybrid whale optimization algorithm to solve a production-distribution network problem considering carbon emissions. International Journal of Engineering32(12), 1781-1789.
20. Mohammadi, M., Jämsä-Jounela, S. L., & Harjunkoski, I. (2019). A multi-echelon supply chain model for sustainable electricity generation from municipal solid waste. IFAC-PapersOnLine52(1), 610-615.
21. Mohseni, S., & Pishvaee, M. S. (2016). A robust programming approach towards design and optimization of microalgae-based biofuel supply chain. Computers & Industrial Engineering100, 58-71.
22. Monica, P., & Kowsalya, M. (2016). Control strategies of parallel operated inverters in renewable energy application: A review. Renewable and Sustainable Energy Reviews65, 885-901.
23. Pham, H. (2006). Handbook of reliability engineering. Springer Science & Business Media.
24. Radfar, A., Mohammaditabar, D., 2019. Bi-Objective Optimization of Vendor Managed Inventory Problem in a Multi Echelon Green Supply Chain. Journal of Industrial Management Perspective9(35), 109-134. (In Persian)
25. Ricardo Fontes, & Freires, F. G. M. (2018). Sustainable and renewable energy supply chain: A system dynamics overview. Renewable and Sustainable Energy Reviews82, 247-259.
26. Sánchez-Flores, R. B., Cruz-Sotelo, S. E., Ojeda-Benitez, S., & Ramírez-Barreto, M. (2020). Sustainable Supply Chain Management—A Literature Review on Emerging Economies.Sustainability12(17), 6972.
27. Sarker, B. R., Wu, B., & Paudel, K. P. (2019). Modeling and optimization of a supply chain of renewable biomass and biogas: Processing plant location. Applied Energy239, 343-355.
28. Shahbazbegian, V., Hosseini-Motlagh, S. M., & Haeri, A. (2020). Integrated forward/reverse logistics thin-film photovoltaic power plant supply chain network design with uncertain data. Applied Energy277, 115538.
29. Shahbazi, F., Sahebi, H., Makui, A., 2020. Location Selection of Solar Power Plants, Wind and Distributed Generation and Degisn of Electrical Distribution Network. Journal of Industrial Management Perspective10(39), 143-170. (In Persian)
30. Teodoro, F. G., da Costa, D. M., Peres, S. M., & Lima, C. A. (2015, October). Supply chain management and metaheuristic algorithms: Analysing a new hybrid genetic crossover operator. In 2015 Latin America Congress on Computational Intelligence (LA-CCI) (pp. 1-6). IEEE.
31 Vahdatzad, M. A., Vahdat, V., Namin, A. T., & Rezai, A. M. Energy Conservation Framework for Green Supply Chain Management. In Proceedings of the International Conference on Industrial Engineering and Operations Management (pp. 27-29).
32. Warren, K., Ambrosio, R., Chen, B., Fu, Y. H., Ghosh, S., Phan, D., ... & Visweswariah, C. (2016). Managing uncertainty in electricity generation and demand forecasting. IBM Journal of Research and Development60(1), 8-1.
33. Willis, H.L. (2018). Distributed power generation: planning and evaluation. Crc Press.
34. Yıldızbaşı, A., Öztürk, C., Efendioğlu, D., & Bulkan, S. (2020). Assessing the social sustainable supply chain indicators using an integrated fuzzy multi-criteria decision-making methods: a case study of Turkey. Environment, Development and Sustainability, 20(3), 1-36.
35. Zhu, X., & Zhao, Z. (2019). Sustainable Supply Chain Network Design: A Review of Literature for 2011-2019. Academic Journal of Humanities & Social Sciences2(6), 1-8.