نگهداری و تعمیرات هوشمند مبتنی بر اینترنت اشیاء با رویکرد «ناب، چابک، تاب‌آور، سبز»: یک فراترکیب در صنعت هواپیمایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، گروه مدیریت صنعتی، دانشکدگان مدیریت، دانشگاه تهران، تهران، ایران.

2 استادیار، گروه مدیریت صنعتی، دانشکدگان مدیریت، دانشگاه تهران، تهران، ایران.

3 دانشجوی دکتری، دانشکده البرز، دانشگاه تهران، تهران، ایران.

10.48308/jimp.15.2.225

چکیده

هدف: فرآیند نگهداری­، ­تعمیرات و بازآماد هواپیما از جمله اقدام‌های پر اهمیت، گران و تخصصی در صنعت هواپیمایی است که اقدام درست در آن اطمینان و راحتی خیال مشتریان و سوددهی را فراهم می­آورد. این صنعت به علت اهمیت صلاحیت پروازی یک هواپیما که ضامن جان مسافران و سلامت هواپیما است، بسیار نسبت به تغییرات و بکارگیری فناوری های نوین تحول گرا سخت گیر است و این موضوعات را با قوانین و رویه های متعدد نیازمند بررسی و تأیید می داند. به طور کلی این فناوری موجب ارتباط بین سیستم ها، زیر سیستم ها و انتقال داده‌ها بین آن‌ها می‌شود و می‌تواند داده‌های در لحظه‌ای را در اختیار پردازشگر قرار دهد که به موجب به کارگیری الگوریتم های هوش مصنوعی داده‌های پرداش شده، می تواند اطلاعات ارزشمندی در زمینه پیشگویی اقدامات مرتبط با نگهداری و تعمیرات ایجاد گردد. با توجه به بررسی های انجام شده این فناوری خود می تواند نمایانگر ویژگی های رویکرد "ناب، چابک، تاب آوری، سبز" گردد، بدین ترتیب در این پژوهش سعی شده است این فناوری در کنار رویکرد مذکور مورد بررسی قرار داده شود تا موجب ارائه مدل تبیینی جامع و نوین از مؤلفه های نگهداری تعمیرات هوشمند با رویکرد"ناب، چابک، تاب آور، سبز و در بستر فناوری تحول آفرین اینترنت اشیاء گردد.
روش: در این پژوهش از روش فراترکیب استفاده می­‌گردد به این ترتیب که با استخراج سوالات پژوهش، جست و جوی تمامی مقالات از سال 2015 تاکنون و در پایگاه­های: وب آف ساینس، اسکوپوس، گوگل اسکالر و جهاد دانشگاهی و ایرانداک و با اعمال قیدهای مربوطه، ارزیابی مقالات با استفاده از ابزار برنامه مهارت­‌های ارزیابی حیاتی، استخراج اطلاعات از مقالات، تجزیه و تحلیل و ترکیب نتایج، کنترل کیفیت پژوهش، نتایج و یافته­ها ارائه می­‌گردد. به این ترتیب تعداد 333 مقاله استخراج می­گردد که پس از پالایش مقالات از نوع: عناوین، چکیده و کیفیت، از تعداد 35 مقاله مقوله­‌های اصلی و فرعی بدست می آید.
یافتهها: بر اساس یافته های پژوهش، 44 کد باز عوامل مرتبط با نگهداری و تعمیرات هوشمند مبتنی بر اینترنت اشیاء و با رویکردهای «ناب، چابک، تاب آور، سبز» و بر بستر اینترنت اشیاء را تبیین کردند که با بررسی مفاهیم نزدیک به هم این کد­ها به 20 کدمحوری منتهی گردید و در مرحله آخر کدهای محوری در چهار مقوله اصلی دربرگیرندۀ: انگیزه­های درون سازمانی، انگیزه­های برون سازمانی، تصمیم گیری مبتنی بر داده، مدیریت سرمایه انسانی دسته بندی شدند. بر اساس یافته­های پژوهش، در مقوله اصلی «انگیزه­های درون سازمانی» دربرگیرندۀ هشت کد باز در قالب پنج کد محوری «کاهش هزینه­ها و افزایش سود­آوری» و «یکپارچگی جریان داخلی اطلاعات»، «تصمیم­گیری گروهی»، «گردش مالی»، «محدودیت های مالی» است. در مقوله «انگیزه­های برون سازمانی» هشت کدباز در قالب چهار کدمحوری «جلب رضایت مشتری»، «تقاضای اجتماعی»، «یکپارچگی جریان خارجی اطلاعات»، «الزامات قانونی» دسته بندی شدند. در مقوله«تصمیم­گیری مبتنی بر داده» 16 کدباز در قالب6 کد محوری «گردآوری هوشمند اطلاعات»، «کیفیت اطلاعات» و «تصمیم گیری مبتنی بر داده»، «امنیت اطلاعات»، «تصمیم­گیری خودکار» و «تجزیه و تحلیل داده» دسته بندی شدند. در مقوله «مدیریت سرمایه انسانی» تعداد 10 کد باز در قالب پنج کدمحوری «مهارت­های تحلیلی»، «فرهنگ سازمان»، «پشتیبانی مدیریت»، «مهارت­های سازگاری»، «مهارت­‌های فناوری ارتباطات و اطلاعات»، طبقه­‌بندی شدند.
نتیجهگیری: از آنجاییکه الگوی ارائه شده در این پژوهش همزمان نگهداری و تعمیرات هواپیما با رویکرد‌های «ناب، چابک، تاب‌آور، سبز» و مبتنی بر اینترنت اشیاء را مورد بررسی قرار داده است در واقع پژوهش‌های پیشین را توسعه داده و از رویکرد به نسبت جامع‌تری برخوردار است و در واقع نوآوری این پژوهش به کارگیری توأمان این رویکردها بر بستر اینترنت اشیاء و در صنعت هواپیمایی است. به این ترتیب الگوی ارائه شده می‌تواند کمک شایانی به کسب‌و‌کار‌های حوزه صنعت هواپیمایی در شناسایی و به‌­کارگیری این مؤلفه‌ها و سپس بهره‌مندی از مزایای آن‌ها در کسب‌و‌کار مربوطه داشته باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

IoT Based Smart Maintenance in LARG Context: a Metasynthesis in the Aviation Industry

نویسندگان [English]

  • Ali Mohaghar 1
  • Rohollah Ghasemi 2
  • sahar shirazi 3
1 * Professor, College of Management, Faculty of Industrial Management and Technology, University of Tehran, Tehran, Iran.
2 Assistant Professor, College of Management, Faculty of Industrial Management and Technology, University of Tehran, Tehran, Iran.
3 Ph.D. Candidate, College of Alborz, University of Tehran, Tehran, Iran.
چکیده [English]

Purpose: The process of maintenance, Repairs and Overhaul of aircraft is one of the most important measures in the aviation industry, which provides confidence and comfort to customers. During the investigations and since the new Internet of Things technology plays a special role in providing aircraft Maintenance, Repair and Overhaul services, the researcher has tried to examine this technology along with important approaches such as Lean, Agile, Resilient and Green. to give In this way, the aim of this research is to present a model of Lean, Agile, Resilient and Green Aircraft Maintenance and Repair components in the context of the revolutionary Internet of Things technology.
Method: In this research, the metacombination method is used. In the following, by extracting the research questions, searching all the articles from 2015 until now and in the databases: Web of Science, Scopus, Google Scholar, Jihad Daneshgahi and Iranduc, and by applying the relevant constraints, evaluating the articles using the skills program tool. Critical evaluation, information extraction from articles, analysis and synthesis of results, quality control of research, results and findings are presented. In this way, the number of 323 articles is extracted, and after refining the articles of the type: titles, abstracts and quality, the main and subcategories are obtained from the number of 33 articles.
Findings: Based on the findings of the research, 44 sub- codes explained the factors related to intelligent maintenance and repairs based on the Internet of Things and with "lean, agile, resilient, green" approaches and based on the Internet of Things. These codes led to 20 theme codes, and in the last stage, the theme codes were categorized into 4 main categories including: intra-organizational motivations, extra-organizational motivations, data-based decision making, human capital management. According to the findings of the research, in the main category of "Internal Motivations" including 8 sub- codes in the form of 5 theme codes "Reducing Costs And Increasing Profitability" and "Integration Of Internal Flow Of Information", "Group Decision Making", "Financial Circulation" ", "Financial Limitations". In the category of "external organizational motivations", 8 sub- codes were categorized in the form of 4 theme codes: "Customer Satisfaction", "Social Demand", "Integrity Of External Flow Of Information", "Legal Requirements". In the category of "Data-Based Decision Making" 16 sub- codes in the form of 6 theme codes "Smart Information Collection", "Information Quality" and "Data-Based Decision Making", "Information Security", "Automatic Decision Making" and "Analysis Data" were categorized. In the category of "Human Capital Management", 10 sub- codes were classified in the form of 5 theme codes, "Analytical Skills", "Organizational Culture", "Management Support", "Compatibility Skills", "ICT Skills".
Conclusion: Since the model presented in this research simultaneously examines the maintenance and repairs of aircraft with "lean, agile, resilient, green" approaches and based on the Internet of Things, in fact, it has developed past researches and adopted a relatively more comprehensive approach. has, and in fact, the innovation of this research is the application of these approaches on the platform of Internet of Things and in the aviation industry. In this way, the presented model can be of great help to businesses in the aviation industry in identifying and using these components and then benefiting from their benefits in the relevant business.

کلیدواژه‌ها [English]

  • Smart Maintenance
  • Aviation Industry
  • Internet of things (IoT)
  • Lean, Agile, Resilient, Green (LARG) Paradigm
  • Meta-synthesis
  1. Adryan, F. A., & Sastra, K. W. (2025). Predictive maintenance for aircraft engine using machine learning: Trends and challenges. International Journal of Aviation Science and Engineering-AVIA, 3(1). https://doi.org/10.47355/ avia.v3i1.45
  2. Afsardalir, A., & Ghorbani, A. (2019). Management of airport pavement repair. The case of Imam Khomeini International Airport. Civil And Project Journal, 1(2), 26-36. Retrieved from: https://www.cpjournals.com/article_91106
  3. Aghazadeh, E. , Alem Tabriz, A. and Shah Qalyan, K. (2023). Design and Explanation of a Hybrid IoT and UAV Model for Intelligent Monitoring of Industrial Equipment Performance with Edge Computing Approach (Case Study: Wind Turbines). Journal of Industrial Management Perspective, 13(4), 149-178. doi:10.48308/jimp.13.4.149. (In Persian)
  4. Al-Sarayreh, A. M. A. , & Al-sarayreh, A. A. (2022). The Impact of Green Human Resources Management on Enhancing Entrepreneurial Performance in the Jordan Aircraft Maintenance Limited (Joramco). Journal of Positive School Psychology,6(4) 9941-9954. Retreved from: https://journalppw.com/index .php/jpsp/article/view/6074
  5. Baláž, M., Kováciková, K., Novák, A., & Vaculík, J. (2023). The application of Internet of Things in air transport. Transportation Research Procedia, 75, 60–67. https://doi.org/10.1016/j.trpro.2023.12.008
  6. Bazargan, A., Ghasemi, R., Eftekhar Ardebili, M., & Zarei, M. (2017). The relationship between ‘higher education and training’and ‘business sophistication’. Iranian Economic Review21(2), 319-341. https://doi.org/10.22059/ier.2017.62106
  7. Bellamy, W. (2017). IOT, Blockchain proposed to improve aircraft maintenance process. Avionics. Retrieved from: https://www.aviationtoday.com/ 2017/01/13/iot-blockchain-proposed-to-improve-aircraft-maintenance-process/
  8. Bokrantz, J. , Skoogh, A. , Berlin, C. , Wuest, T. , & Stahre, J. (2020). Smart Maintenance: an empirically grounded conceptualization. International Journal of Production Economics, 223, 107534. https://doi.org/10.1016/j.ijpe. 2019.107534.
  9. Bottani, E., Bigliardi, B., & Rinaldi, M. (2022). Development and proposal of a LARG (lean, agile, resilient, green) performance measurement system for a food supply chain. IFAC-PapersOnLine, 55(10), 2437–2444. https://doi.org/10.1016/J.IFACOL.2022.10.074.
  10. Chui, M., Lo¨ffler, M., & Roberts, R. (2010). The Internet of Things. McKinsey & Company. Retrieved from: https://www.mckinsey.com/industries/ technology-media-and-telecommunications/our-insights/the-internet-of-things
  11. Dayi, O., Afsharzadeh, A., & Mascle, C. (2016). A Lean based process planning for aircraft disassembly. IFAC-PapersOnLine49(2), 54-59. https://doi.org/10.1016/j.ifacol.2016.03.010.
  12. Dui, H. , Liu, M. , Song, J. , & Wu, S. (2023). Importance measure-based resilience management: Review, methodology and perspectives on maintenance. Reliability Engineering & System Safety, 237, 109383. https://doi.org/10.1016/j.ress.2023.109383
  13. Fumagalli, L., Macchi, M., Colace, C., Rondi, M., & Alfieri, A. (2016). A smart maintenance tool for a safe electric arc furnace. IFAC-PapersOnLine49(31), 19-24. https://doi.org/10.1016/j.ifacol.2016.12.155
  14. Garcia, MC., Sanz-Bobi, MA..,& Del Pico, J. (2006), SIMAP: Intelligent System for Predictive Maintenance: Application to the health condition monitoring of a windturbine gearbox. Computers in Industry, 57(6), 552–568. https://doi.org/ 10.1016/j.compind.2006.02.011.
  15. Ghasemi, R., Alidoosti, A., Hosnavi, R., & Norouzian Reykandeh, J. (2018:a). Identifying and prioritizing humanitarian supply chain practices to supply food before an earthquake. Industrial management journal10(1), 1-16. https://doi.org/10.22059/imj.2018.234645.1007246
  16. Ghasemi, R., Mahbanooei, B., & Beigi, R. G. (2018:b). The Relationship between Labor Market Efficiency and Innovation. In Proceedings of the 11th International Seminar on Industrial Engineering & Management (ISIEM), (Nov. 27-29, 2018, Makassar, Indonesia) (pp. 142–149). Doi: 2019/08/ 11ISIEM2018.126
  17. Ghani, M. S., & Zheng Yi, W. (2018). Implementation of Swiss Cheese for UniKL MIAT hangar. IOP Conference Series: Materials Science and Engineering, 405(1), 12007. DOI: 10.1088/1757-899X/405/1/012007.
  18. Ghosh, S. (2024). Material evolution for green aviation. Comprehensive Materials Processing (Second Edition), 8 ,68–76. https://doi.org/10.1016/B978-0-323-96020-5.00104-7.
  19. 19. Gomaa, A. H. (2025). Enhancing Efficiency and Effectiveness in MRO Inventory Management Using Lean Six Sigma. IUP Journal of Operations Management, 24(1), 19-55.
  20. Hill, J. , Thomas, A. J. , Mason-Jones, R. K. , & El-Kateb, S. (2018). The implementation of a Lean Six Sigma framework to enhance operational performance in an MRO facility. Production & Manufacturing Research, 6(1), 26-48. https://doi.org/10.1080/21693277.2017.1417179
  21. Hoorshad, A. , Safari, H. and Ghasemi, R. (2023). Developing Smart Supply Chain Management Model in Fast-moving Consumer Goods Industry (FMCG). Journal of Industrial Management Perspective, 13(4), 108-148. doi: 10.48308/jimp.13.4.108. (In Persian).
  22. Hoque, I. , 2022. Buyer-assisted lean intervention in supplier firms: A supplier development approach. Journal of Manufacturing Technology Management 33(1), 146-168. https://doi.org/10.1108/JMTM-11-2020-0445.
  23. Imanov, T. , Yıldız, M. , & Koruyucu, E. (2022). Lean Six Sigma Application for Aircraft Maintenance Process. In: Karakoc, T.H., Colpan, C.O., Dalkiran, A. (eds) Progress in Sustainable Aviation . Sustainable Aviation. Springer, Cham. https://doi.org/10.1007/978-3-031-12296-5_8
  24. Jafarnejad, A., Ghasemi, R., Abdollahi, B., & Esmailzadeh, A. (2013). Relationship between macroeconomic environment and technological readiness: A secondary analysis of countries global competitiveness. International Journal of Management Perspective, 1(2), 1-13. Retrieved from: publication/315573973
  25. Jafarnezhad Chaghooshi, A., Kazemi, A., & Arab, A. (2016). Identification and Prioritization of Supplier’s Resiliency Evaluation Criteria Based on BWM. Journal of Industrial Management Perspective, 6(3), 159-186. https://jimp.sbu.ac.ir/article_87226.html (In Persian)
  26. Jahanara, javad.(1400). Investigating the impact of IoT management on aircraft repair quality management. (Master's thesis,Payam Noor Universit). (In Persian).
  27. Kabashkin, I., & Perekrestov, V. (2024). Ecosystem of Aviation Maintenance: Transition from Aircraft Health Monitoring to Health Management Based on IoT and AI Synergy. Applied Sciences, 14(11), 4394. https://doi.org/10.3390/app14114394
  28. Kabashkin, I., Perekrestov, V., Tyncherov, T., Shoshin, L., & Susanin, V. (2024). Framework for Integration of Health Monitoring Systems in Life Cycle Management for Aviation Sustainability and Cost Efficiency. Sustainability, 16(14), 6154. https://doi.org/10.3390/su16146154
  29. Kamrani, M. Ghanbari, M&. Tavakoli, A. (2014). A Study on the Performance of Preventive Maintenance (PM) Systems with an Optimized Utilization Approach in Distribution Networks. International Conference on Electricity. 29, Tehran, Iran. https://sid.ir/paper/882959/en (In Persian)
  30. Karimi, T., Azar, A., Mohebban, B., & Ghasemi, R. (2022). Developing an Internet of Things-based intelligent transportation technology roadmap in the food cold supply chain. Industrial Management Journal, 14(2), 195-219. https://doi.org/10.22059/imj.2021.319427.1007825.
  31. Karunakaran, S. (2016). Innovative application of LSS in aircraft maintenance environment. International journal of lean six sigma7(1), 85-108. https://doi.org/10.1108/IJLSS-01-2015-0001.
  32. Karthik, S. V. , Akshaya, V. , & Sriramalakshmi, P. (2021, February). IoT based Predictive Maintenance of Electrical Machines in Aircraft. In 2021 7th International Conference on Electrical Energy Systems (ICEES), 569-575. IEEE. https://doi.org/10.1109/ICEES51510.2021.9383669.
  33. Keivanpour, S., & Kadi, D. A. (2018). Perspectives for application of the internet of things and big data analytics on end of life aircraft treatment. International Journal of Sustainable Aviation4(3-4), 202-220. https://doi.org/10.1504/ IJSA.2018.098423
  34. Korchagin, A., Deniskina, A., & Fateeva, I. (2019). Lean and energy efficient production based on internet of things (IOT) in aviation industry. In E3S web of conferences(Vol. 110, p. 02124). EDP Sciences.. https://doi.org/10.1051/ e3sconf/201911002124
  35. Kolanjiappan, S., & Maran, K. (2011). Lean philosophy in aircraft maintenance. Journal of Management Research and Development1(1), 27-41. Retrieved from: https://www.prjpublication.com/backend/file/aircraft.pdf
  36. Korchagin, A., Deniskin, Y., Pocebneva, I., & Vasilyeva, O. (2022). Lean Maintenance 4.0: Implementation for aviation industry. Transportation Research­Procedia, 63, 1521–1533 https://doi.org/10.1016/j.trpro.2022.06.164.
  37. Kumar, A., Yadav, S., Stephens, D., Swindell, P., & Piotrowski, D. (2025). Evaluation of SMART Layer Sensor Inspection for Cracking Around Chemical Milled Area Under Simulated Environment for Commercial Airplane. In AIAA SCITECH 2025 Forum (p. 1221).https://doi.org/ 10.2514/6.2025-1221.
  38. Lee, J., Jin, C., Liu, Z., & Davari Ardakani, H. (2017). Introduction to data-driven methodologies for prognostics and health management. In: Ekwaro-Osire, S., Gonçalves, A., Alemayehu, F. (eds) Probabilistic Prognostics and Health Management of Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-55852-3_2.
  39. Lian. X.(2021). Application Prospects of New Information Technology in Aviation Maintenance Industry. 7th International Symposium on Mechatronics and Industrial Informatics (ISMII), Zhuhai, China, 288-291, https://doi.org/ 10.1109/ISMII52409.2021.00068
  40. Mahbanooi, B., & Pourezzat, A. A. (2023). Education policy guide for human capital: an importance-performance analysis in iran. Journal of Educational Planning Studies11(22), 1-22. https://doi.org/10.22080/eps.2023.23983.2135
  41. Mahbanooei, B and Ghasemi, R. (2024). “Identifying the Behavioral Competencies of Street-level Bureaucrats: A Quranic Perspective”. Public Administration Perspective, 15(3), 130-154. https://doi.org/10.48308/jpap.2024.234561.1373
  42. Marin-De-Yzaguirre, M., Baselga, O., Pagès, J., Calveras, A., Guixé, P., & Ruiz-De-Azua, J. A. (2024). Demonstration of Direct-to-Satellite IoT for Monitoring Water Reservoirs in Remote Areas to Prevent Wildfires. IEEE Wireless Communications and Networking Conference, WCNC. https://doi.org/10.1109/WCNC57260.2024.10571043.
  43. Meissner, R., Rahn, A., & Wicke, K. (2021). Developing prescriptive maintenance strategies in the aviation industry based on a discrete-event simulation framework for post-prognostics decision making. Reliability Engineering & System Safety, 214, 107812 https://doi.org/https://doi.org/10.1016/j.ress.2021.107812.
  44. Mohaghar, A., Ghasemi, R., & Imani, M. H. (2022). Developing a Resilient Business Model for Complex Techno-social Organizations by Meta-Synthesis Method. Industrial Management Journal, 14(4), 507–538. https://doi.org/10.22059/imj.2022.349851.1007993. (In Persian).
  45. Mohaghar, A., Heydarzadeh Moghaddam, H., & Ghasemi, R. (2023). Developing a Model to Optimize Maximum Coverage of Roadside Units Placement in Vehicular Ad–hoc Network for Intelligent Transportation System. Journal of Industrial Management Perspective, 13(2), 211-240. https://doi.org/10.48308/jimp.13.2.211

46.Mohaghar, A., Sadeghi Moghadam, M. R., Ghourchi Beigi, R., & Ghasemi, R. (2021). IoT-based services in banking industry using a business continuity management approach. Journal of Information Technology Management, 13(4), 16-38.https://doi.org/ 10.22059/jitm.2021.314908.2666. (In Persian).

  1. Mohaghar, A., Safari, H., Ghasemi, R., Abdullahi, B., & Maleki, M. H. (2011). Canonical correlation analysis between supply chain relationship quality and supply chain performance: A case study in the Iranian automotive industry. International Bulletin of Business Administration, 10(10), 122-134. Retrieved from: publication/312488805
  2. Mohaghar, A., Ghasemi, R., Toosi, H., & Sheykhizadeh, M. (2022). Evaluating city of knowledge’s project management office functions using BWM and importance‐performance analysis. Journal of Decisions and Operations Research, 7(4), 530-549.https://doi.org/ doi: 10.22105/dmor.2021.290728.1424
  3. Mohammadzadeh, A. K., Ghafoori, S., Mohammadian, A., Mohammadkazemi, R., Mahbanooei, B., & Ghasemi, R. (2018). A Fuzzy Analytic Network Process (FANP) approach for prioritizing internet of things challenges in Iran. Technology in Society, 53, 124-134. https://doi.org/10.1016/j.techsoc.2018.01.007.
  4. Monsalud, A., Ho, D., & Rakas, J. (2015). Greenhouse gas emissions mitigation strategies within the airport sustainability evaluation process. Sustainable Cities and Society, 14, 414–424. https://doi.org/https://doi.org/10.1016/j.scs.2014.08.003.
  5. Nasrollahi, M., Ghadikolaei, A. S., Ghasemi, R., Sheykhizadeh, M., & Abdi, M. (2022). Identification and prioritization of connected vehicle technologies for sustainable development in Iran. Technology in Society, 68, 101829.
  6. Perekrestov, V., & Fedorov, R. (2024, September). Evaluating the Transition from Traditional to Platform-Based MRO Business Model in the Aviation Industry. In International Conference on Reliability and Statistics in Transportation and Communication, 606-618. Cham: Springer Nature Switzerland.https://doi.org/10.1007/978-3-031-87532-8_54.
  7. Pogačnik, B. , Tavčar, J. , & Duhovnik, J. 2015. Application of lean methods into aircraft maintenance processes. In Transdisciplinary Lifecycle Analysis of Systems, ISPE Inc. Int. Con. on CE. Delft, 259-268. IOS Press.https://doi.org/10.3233/978-1-61499-544-9-259.
  8. Pourezzat, A., Mahbanooei, B., Ghasemi, R., Rafiei, S. (2022). Governance Performance Evaluation System (GPES).University of Tehran Press, Iran, Tehran. (In Persian). Doi: publication/361391504_
  9. Pourezzat, A. A., Zareimatin, H., Yazdani, H. R., & Mehbanooei, B. (2019). Designing Virtue-Based Organizational Ethics model for Tehran University of Medical Sciences Hospitals. Journal of Medical Ethics , 13 (44), 1-13. Retrieved from: https://www.sid.ir/paper/687226
  10. Quinn, P. (2019). Optimizing Pre-Flight Checkout by Leveraging IOT enabled FTI and Augmented Reality. In International Telemetering Conference Proceedings. International Foundation for Telemetering.
  11. Rabathi,S.,& Hasbullah,H. (2023). Improving workflow of aircraft maintenance for reduce lead-time on nine-passenger aircraft. AIP Conference Proceedings, Volume 2485, Issue 1, id.120005, 9 https://doi.org/10.1063/5.0104953.
  12. Rastegar, A. A., Mahbanooei, B., & Ghasemi, R. (2012, May). Canonical correlation analysis between technological readiness and labor market efficiency: A secondary analysis of countries global competitiveness in 2011–2012. In 13th International Conference on Econometrics, Operations Research and Statistics (ICEOS-2012)(pp. 24-26). Retrieved from: publication/315572228
  13. Razavi, S. M., Ghasemi, R., & Mahbanooei, B. (2015). Prioritizing the middle east countries based on goods market efficiency’indicators. In International Research Conference on Business, Economics and Social Sciences, IRC-2015, Istanbul, Turkey. 27th to 28th February. Retrieved from: publication/315551178
  14. Rifqi, H. , Souda, S. B. , Zamma, A. , Kassami, S. (2021). Lean Maintenance 4.0: An application of the IoT Technology in the facility management industry. J. International Journal of Advanced Trends in Computer Science and Engineering 9(5), 9064-9070.https://doi.org/ 10.30534/ijatcse/2020/311952020.
  15. Rojas-Delgado, N. , Pineda-Rojas, A. A. , & Leon-Chavarri, C. C. (2022), September). Resource Optimization Model to Increase Efficiency in Aircraft Maintenance Operations, Using Lean Six Sigma and Linear Programming. In Proceedings of the 8th International Conference on Industrial and Business Engineering, 449-454. https://doi.org/10.1145/3568834.3568883.
  16. Sadeghi, A. , Safari, S. , & Abbasi, R. (2019). Designing a business model Based on LARG Approach. Journal of Entrepreneurship Development, 12(2), 221-239. https://doi.org/10.22059/jed. 2019.276962.652924.
  17. Salvada, P. , Carneiro, M. , & Mourão, A. (2016). The lean thinking application in aircraft maintenance. TMQ_Techniques Methodologies and Quality, Número especial, 65-85.
  18. Sandelowski, M., & Barroso, J. (2006). Handbook for synthesizing qualitative research. springer publishing company.
  19. Segovia Ramírez, I., García Márquez, F. P., & Parra Chaparro, J. (2024). Convolutional neural networks andra Internet of Things for fault detection by aerial monitoring of photovoltaic solar plants. Measurement: Journal of the International Measurement Confederation, 234. https://doi.org/10.1016/j.measurement.2024.114861.
  20. Seyed Javadin, S. R., Mahbanooei, B., & Ghasemi, R. (2016). A Cause-Effect Diagram for Prophet Moses' Managerial Competencies by Using Grey DEMATEL. Iranian Journal of Management in the Islamic University, 4(10), 207-226. (In Persian) Retrieved from: https://miu.nahad.ir/article_300
  21. Shojaei, A. A., Mahbanooei, B., Farahani, A., & Pourezzat, A. A. (2023). Organizational Ethics Indicators in Iranian Hospital: An Importance-Performance Analysis. Iranian Journal of Nursing and Midwifery Research28(5), 593-603. Retrieved from: https://journals.lww.com/jnmr/fulltext/2023/28050
  22. Sharifi, H., & Zhang, Z. (1999). A methodology for achieving agility in manufacturing organisations: An introduction. International Journal of Production Economics, 62(1), 7-22. https://doi.org/10.1016/S0925-5273(98)00217-5.
  23. Sheffi, Y. (2005). Preparing for the big one [supply chain management]. Manufacturing Engineer, 84(5), 12-15. https ://digital-library.theiet.org/content/journals/10.1049/me_20050503
  24. Sheykhizadeh, M., Ghasemi, R., Vandchali, H. R., Sepehri, A., & Torabi, S. A. (2024). A hybrid decision-making framework for a supplier selection problem based on lean, agile, resilience, and green criteria: a case study of a pharmaceutical industry. Environment, Development and Sustainability, 1-28.https://doi.org/ 10.1007/S10668-023-04135-7/METRICS.
  25. Shirinfar, M. , Hosseininasab, H. , Sadegheih, A. , & Fakhrzad, M. B. (2021). Reducing Turnaround Time (TAT) Considering Lean Principles within Aircraft Maintenance Organizations (Case Study: Fars CO Aircraft MRO Center). Journal of Improvement Management, 15(2), 97-126. https://doi.org/ 10.22034/jmi. 2021.250063.2360. (In Persian)
  26. Tsakalerou, M., Nurmaganbetov, D., & Beltenov, N. (2022). Aircraft Maintenance 4.0 in an era of disruptions. Procedia Computer Science, 200, 121–131. https://doi.org/10.1016/j.procs.2022.01.211
  27. Tavakkoli, A., Mahbanooei, B. (2014). Studying the ranking of regional countries competitiveness based on public and private institutions’indicators and providing some strategies for enhancing the position of islamic republic of iran. Journal of Iran's Economic Essays,10(20), 135-162. (In Persian).
  28. Wagner, T. , Herrmann, C. , & Thiede, S. (2017). Industry 4.0 impacts on lean production systems. Procedia Cirp, 50th CIRP Conference on Manufacturing Systems ,63, 125-131. https://doi.org/10.1016/j.procir.2017.02.041.
  29. Werbińska-Wojciechowska, S.,& Winiarska, K.(2023). Maintenance Performance in the Age of Industry 4.0: A Bibliometric Performance Analysis and a Systematic Literature Review. Sensors , 23, 1409. https://doi.org/10.3390/s23031409.
  30. Wong,E., & Man,W.( 2023). Smart Maintenance and Human Factor Modeling for Aircraft Safety, Springer Series in Reliability Engineering, in: Hoang Pham (ed.), Applications in Reliability and Statistical Computing, 25-59, Springer.https://doi.org/ 10.1007/978-3-031-21232-1_2.
  31. Wroclaw, P. Santonino III, M. D. , Koursaris, C. ,& Williams, M. (2018). Modernizing the Supply Chain of Airbus by Integrating RFID and Blockchain Processes. J. International Journal of Aviation, Aeronautics, and Aerospace 5(4), 1-17.https://doi.org/ 10.15394/ijaaa.2018.1265.
  32. Yaakub, S. and Mustafa, H.K. (2015). Supply chain risk management for the SME’s. Academic Journal of Interdisciplinary Studies, 4(1), 151-158. https://doi.org/10.1051/e3sconf/202124411010. (In Persian).
  33. Yangdon, K., Subba, R., Khan, N. M. M., Ghaley, C. R., & Kumar, V. S. (2025). AI in Aircraft Airworthiness Management in Bhutan: Prediction of Aircraft Maintenance Issues. In AIAA SCITECH 2025 Forum, 1286. https://doi.org/10.2514/6.2025-1286.
  34. Yazar, I., Sahin, Ö., Degerli, M. C, & Kushan, M. C. (2022). Internet of Things in Maintenance and Virtual Reality/Augmented Reality Applications in Aircraft Maintenance. International Maintenance Technologies Congress and Exhibition.
  35. Yousefi, D., Yousefi, J., Ghasemi, R., & Mohaghar, A. (2024). Key success factors to implement IoT in the food supply chain. Journal of Information Technology Management, 16(3), 61-91.

https://doi.org/ doi: 10.22059/jitm.2024.372404.3618.

  1. Zamani, M., Ghorchibeigi, R. & Ghasemi, R. (2018). Identifying the requirements and applications of Internet of things (IoT) in the banking industry based on international experience. In 7th National Conference on Electronic Banking and Payment Systems, Tehran, Iran. https://civilica.com/doc/785668.(in Persian).
  2. Zhang, C., Wang, C. and Chen, Q.(2019). Design of Lean Maintenance Process for Ball Screw Actuator, IEEE 1st International Conference on Civil aviation safety and information technology (ICCASIT), Kunming, China, 425-430, https://doi.org/10.1109/ICCASIT48058.2019.8973230.