Presenting the Model of Design Requirements for Industrial Symbiosis Network Using Meta-Synthesis Method (Case Study: Babel Industrial Park, Iraq)

Document Type : Original Article

Authors

1 Ph.D. student, Department of Management, Faculty of Economics and Administrative Sciences, Ferdowsi University of Mashhad.

2 Associate Professor, Department of Management, Faculty of Economics and Administrative Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.

3 Professor, Department of Management, Faculty of Economics and Administrative Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.

10.48308/jimp.15.1.160

Abstract

Introduction: Environmental challenges in industrial parks have become increasingly critical, marked by improper waste disposal and resource depletion. Addressing these issues requires innovative solutions for sustainable industrial development. Industrial symbiosis networks represent a promising approach to tackling these complex environmental and economic challenges. This study focuses on developing a model for designing the requirements of an industrial symbiosis network tailored for an industrial park in Babel, Iraq.
Methodology: This research is descriptive in its objectives and applied in nature. The study employs a qualitative meta-synthesis method for data collection, utilizing academic resources published between 2016 and 2023. Before formulating the model, the identified components were screened and aligned with the conditions of the study area using the Delphi method. The Delphi panel consisted of 15 experts, including 8 senior managers from Babel Industrial Park (each with at least 10 years of experience), 4 university professors specializing in production management and supply chain, and 3 industrial consultants experienced in industrial symbiosis. The Delphi process was conducted in three stages. Finally, the validated requirements were incorporated into the final model using Atlas.ti software.
Findings: After screening books, theses, and journal publications indexed in reputable scientific databases, 46 academic articles were selected. Following Sandelowski and Barroso’s seven-step approach, 46 design requirements for industrial symbiosis networks were identified and categorized into five main dimensions: technical, organizational, economic, social, and institutional. After expert validation, 16 essential requirements were selected, and the final model was constructed using Atlas.ti. To validate the model, hypothesis testing based on relationships between variables was conducted. The results confirm the validity of the designed model.
Conclusion: This research provides a comprehensive framework for understanding and implementing industrial symbiosis networks in Babel, Iraq. The proposed model integrates five key dimensions in a unified structure: organizational, economic, social, institutional, and technical. Each dimension plays a distinct role in the network's success while simultaneously interacting with others. The organizational dimension is foundational for fostering collaboration among network members. It encompasses factors such as organizational capacity, mutual trust, knowledge sharing, and managerial attitudes. In terms of its novelty, the study addresses a significant gap by focusing on the practical identification of requirements and developing a tailored model for industrial symbiosis networks. Research on industrial symbiosis in developing countries remains limited. Additionally, while most previous studies employed quantitative or grounded theory approaches, this research leverages meta-synthesis to consolidate existing findings and offer a systematic and holistic model.

Keywords

Main Subjects


  1. Abdulraheem, A. B. H., Alrikabi, N. K. (2023). The new industrial cities and resources sustainability - case study: industrial zone in Ramady city. 3rd International Conference on Smart Cities and Sustainable Planning, 1129(1), 012023.
  2. , H. M., Gür, Ş., Özcan, E., Eren, T. (2020). Ranking of sustainability criteria for industrial symbiosis applications based on ANP. Journal of Environmental Engineering and Landscape Management, 28(4), 192-201.
  3. Albino, V., Garavelli, A. C., Romano, V. A. (2013). A classification of industrial symbiosis networks: a focus on materials and energy recovery. Advances in Production Management Systems. Competitive Manufacturing for Innovative Products and Services, 216-223.
  4. Al-karkhi, Z., Fadhel, J. (2020). Implementation of Industrial Symbiosis: How can a collaborative network improve waste management?
  5. Allenby, B. R., Richards, D. J. (1994). The greening of industrial ecosystems.
  6. Al-Quradaghi, S., Zheng, Q. P., Elkamel, A. (2020). Generalized framework for the design of eco-industrial parks: Case study of end-of-life vehicles. Sustainability, 12(16), 6612.
  7. Astuti, R. S. D., Astuti, A. D., Hadiyanto (2018). Preliminary Design of Industrial Symbiosis of Smes Using Material Flow Cost Accounting (MFCA) Method. E3S Web of Conferences, 31, 4008.
  8. Azevedo, J., Ferreira, I., Dias, R., Ascenço, C., Magalhães, B., Henriques, J., Iten, M., Cunha, F. (2021). Industrial symbiosis implementation potential—An applied assessment tool for companies. Sustainability, 13(3), 1420.
  9. Azevedo, J., Vladimirova, D., Miller, K., Iten, M., Henriques, J., Estrela, M., Dias, R. (2021). Guidelines for Industrial Symbiosis—a Systematic Approach for Content Definition and Practical Recommendations for Implementation. Circular Economy and Sustainability, 1(1), 507-523.
  10. Bacudio, L. R., Benjamin, M. F. D., Eusebio, R. C. P., Holaysan, S. A. K., Promentilla, M. A. B., Yu, K. D. S., Aviso, K. B. (2016). Analyzing barriers to implementing industrial symbiosis networks using DEMATEL. Sustainable Production and Consumption, 7, 57-65.
  11. Bechara, L., Alessanra, M. (2009). Eco-industrial park development in Rio de Janeiro-Brazil: A tool for sustainable development. Journal of Cleaner Production, 17(7), 654-661.
  12. Belaud, J. P., Adoue, C., Vialle, C., Chorro, A., Sablayrolles, C. (2019). A circular economy and industrial ecology toolbox for developing an eco-industrial park: perspectives from French policy. Clean Technologies and Environmental Policy, 21(5), 967-985.
  13. Bellantuono, N., Carbonara, N., Pontrandolfo, P. (2017). The organization of eco-industrial parks and their sustainable practices. Journal of Cleaner Production, 161, 362-375.
  14. Bian, Y., Dong, L., Liu, Z., Zhang, L. (2020). A sectoral eco-efficiency analysis on urban-industrial symbiosis. Sustainability, 12(9), 3650.
  15. Bocken, N. M., Short, S. W., Rana, P., Evans, S. (2014). A literature and practice review to develop sustainable business model archetypes. Journal of Cleaner Production, 65, 42-56.
  16. Boom Cárcamo, E. A., Peñabaena-Niebles, R. (2022). Opportunities and challenges for the waste management in emerging and frontier countries through industrial symbiosis. Journal of Cleaner Production, 363, 132607.
  17. Booth, A., James, M. S., Clowes, M., Sutton, A. (2021). Systematic approaches to a successful literature review.
  18. Bordoli, L., Scire', G., Rossi, F. (2023). Designing Dynamic Sustainable Business Models to Assess the Feasibility of an Industrial Symbiosis: The Case of the Retro-Port Area of Trieste. Businesses, 3(2), 368-381.
  19. Bruck, R. (2016). A European vision for industrial symbiosis: recommendations for a successful European IS strategy.
  20. Castellet-Viciano, L., Hernández-Chover, V., Bellver-Domingo, Á., Hernández-Sancho, F. (2022). Industrial symbiosis: a mechanism to guarantee the implementation of circular economy practices. Sustainability, 14(23), 15872.
  21. Cecchin, A., Salomone, R., Deutz, P., Raggi, A., Cutaia, L. (2020). Relating industrial symbiosis and circular economy to the sustainable development debate. Industrial Symbiosis for the Circular Economy: Operational Experiences, Best Practices and Obstacles to a Collaborative Business Approach, 1-25.
  22. Chertow, M. R. (2000). Industrial symbiosis: literature and taxonomy. Annual Review of Energy and the Environment, 25(1), 313-337.
  23. Chertow, M. R. (2007). “Uncovering” industrial symbiosis. Journal of Industrial Ecology, 11(1), 11-30.
  24. Costa, I., Ferrão, P. (2010). A case study of industrial symbiosis development using a middle-out approach. Journal of Cleaner Production, 18(10-11), 984-992.
  25. Daddi, T., Nucci, B., Iraldo, F. (2017). Using Life Cycle Assessment (LCA) to measure the environmental benefits of industrial symbiosis in an industrial cluster of SMEs. Journal of Cleaner Production, 147, 157-164.
  26. D'Amico, F., Buleandra, M. M., Velardi, M., Tanase, I. (2007). Industrial ecology as "best available technique": A case study of the Italian Industrial District of Murano. Progress in Industrial Ecology, An International Journal, 4, 268-287.
  27. Demartini, M., Bertani, F., Tonelli, F., Raberto, M., Cincotti, S. (2021). An investigation into modelling approaches for industrial symbiosis: a literature review.
  28. Desrochers, P. (2004). Industrial symbiosis: the case for market coordination. Journal of Cleaner Production, 12(8-10), 1099-1110.
  29. Dias, R., Azevedo, J., Ferreira, I., Estrela, M., Henriques, J., Ascenço, C., Iten, M. (2020). Technical Viability Analysis of Industrial Synergies—An Applied Framework Perspective. Sustainability, 12(18), 7720.
  30. Ehrenfeld, J., Gertler, N. (1997). Industrial ecology in practice: The evolution of interdependence at Kalundborg. Journal of Industrial Ecology, 1(1), 67-79.
  31. Ferreira, I. A., Godina, R., Carvalho, H. (2021). Waste valorization through additive manufacturing in an industrial symbiosis setting. Sustainability, 13(1), 234.
  32. Fichtner, W. (2005). Barriers of interorganisational environmental management: Two case studies on industrial symbiosis. Journal of Cleaner Production, 13(3), 1-10.
  33. Fraccascia, L., Giannoccaro, I., Albino, V. (2018). Efficacy of landfill tax and subsidy policies for the emergence of industrial symbiosis networks: An agent-based simulation study. Sustainability, 9(4), 521.
  34. Fraccascia, L., Yazan, D. M., Yazdanpanah, V., van Capelleveen, G. (2020). Energy-based industrial symbiosis: a literature review for circular energy transition. Environment, Development and Sustainability, 23(4), 4791-4825.
  35. Fraccascia, L., Yazdanpanah, V., van Capelleveen, G., Yazan, D. M. (2021). Energy-based industrial symbiosis: a literature review for circular energy transition. Environment, Development and Sustainability, 23(4), 4791-4825.
  36. Genc, O., van Capelleveen, G., Erdis, E., Yildiz, O., Yazan, D. M. (2019). A socio-ecological approach to improve industrial zones towards eco-industrial parks. Journal of Environmental Management, 250, 109507.
  37. Ghosh, S. K., Baidya, R. (2021). Circular economy in India: Reduce, reuse, and recycle through policy framework. Circular Economy: Recent Trends in Global Perspective, 183-217.
  38. Gibbs, D., Deutz, P. (2003). Implementing industrial ecology? Planning eco-industrial parks in the USA. Geoforum, 36(4), 452-464.
  39. Gibbs, D., Deutz, P. (2007). Reflections on implementing industrial ecology through eco-industrial park development. Journal of Cleaner Production, 15(17), 1683-1695.
  40. Haraguchi, N., Martorano, B., Sanfilippo, M. (2019). What factors drive successful industrialization? Evidence and implications for developing countries. Structural Change and Economic Dynamics, 49, 266-276.
  41. Harden, A., Thomas, J. (2005). Methodological issues in combining diverse study types in systematic reviews. International Journal of Social Research Methodology, 8(3), 257-271.
  42. Harfeldt-Berg, L., Broberg, S., Ericsson, K. (2022). The Importance of Individual Actor Characteristics and Contextual Aspects for Promoting Industrial Symbiosis Networks. Sustainability, 14(9), 4927.
  43. Harris, S. (2007). The potential role of industrial symbiosis in combating global warming. International Conference on Climate Change, 29, 31.
  44. Heeres, R. R., Vermeulen, W. J., De Walle, F. B. (2004). Eco-industrial park initiatives in the USA and the Netherlands: first lessons. Journal of Cleaner Production, 12(8-10), 985-995.
  45. Henriques, J., Ferrão, P., Castro, R., Azevedo, J. (2021). Industrial symbiosis: A sectoral analysis on enablers and barriers. Sustainability, 13(4), 1723.
  46. Herczeg, G., Akkerman, R., Hauschild, M. Z. (2018). Supply chain collaboration in industrial symbiosis networks. Journal of Cleaner Production, 171, 1058-1067.
  47. Hewes, A. K., Lyons, D. I. (2008). The humanistic side of eco-industrial parks: Champions and the role of trust. Regional Studies.
  48. Hsu, C. C., Sandford, B. A. (2007). The Delphi technique: making sense of consensus. Practical Assessment, Research, and Evaluation, 12(1).
  49. Jacobsen, N. B., Anderberg, S. (2004). Understanding the Evolution of Industrial Symbiotic Networks: The Case of Kalundborg. Economics of Industrial Ecology: Materials, Structural Change, and Spatial Scales, 313.
  50. Jacobsson, A., Larsson, A. (2023). Valorizing waste through collaborations: A road map to expand the possibilities of a circular company.
  51. Jafari-Nejad, N., Moghbel-Baarz, A., Azar, A. (2014). Identifying and extracting the main components of enterprise risk management using the meta-synthesis method. Journal of Industrial Management Perspective, 4(3), 85-107. (in persian)
  52. Jato-Espino, D., Ruiz-Puente, C. (2020). Fostering Circular Economy Through the Analysis of Existing Open Access Industrial Symbiosis Databases. Sustainability, 12(3), 952.
  53. Kamali, Y. (2017). Meta-synthesis methodology and its application in public policy. Politics - Journal of the Faculty of Law and Political Science, 47(3), 721-736. (in persian)
  54. Khan, Z. A., Chowdhury, S. R., Mitra, B., Mozumder, M. S., Elhaj, A. I., Salami, B. A., Rahman, S. M. (2023). Analysis of industrial symbiosis case studies and its potential in Saudi Arabia. Journal of Cleaner Production, 385, 135536.
  55. Kiani, M., Andalib Ardakani, D., Mirfakhradini, S. H., Zare Ahmadabadi, H. (2023). An analysis of barriers to implementing circular economy and Industry 4.0 in the supply chain: A meta-synthesis and fuzzy DANP approach. Journal of Industrial Management Perspective, 13(4), 9-45. (in persian)
  56. Korhonen, J., Snäkin, J. P. (2005). Analysing the evolution of industrial ecosystems: concepts and application. Ecological Economics, 52(2), 169-186.
  57. Kosmol, L., Otto, L. (2020). Implementation barriers of industrial symbiosis: A systematic review. Proceedings of the 53rd Hawaii International Conference on System Sciences, 6052-6060.
  58. Landis, J. R., Koch, G. G. (1977). An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics, 363-374.
  59. Lawshe, C. H. (1975). A quantitative approach to content validity. Personnel Psychology, 28(4), 563-575.
  60. Linstone, H. A., Turoff, M. (2002). The Delphi Method: Techniques and Applications.
  61. Liu, X., Bae, J. (2019). Urbanization and industrialization impact of CO2 emissions in China. Journal of Cleaner Production, 172, 178-186.
  62. Lombardi, D. R., Laybourn, P. (2012). Redefining industrial symbiosis: Crossing academic–practitioner boundaries. Journal of Industrial Ecology, 16(1), 28-37.
  63. Luciano, A., Barberio, G., Mancuso, E., Sbaffoni, S., La Monica, M., Scagliarino, C., Cutaia, L. (2016). Potential improvement of the methodology for industrial symbiosis implementation at regional scale. Waste and Biomass Valorization, 7, 1007-1015.
  64. MacArthur, E. (2013). Towards the circular economy. Journal of Industrial Ecology, 2(1), 23-44.
  65. Mantese, G. C., Amaral, D. C. (2016). Identification and qualitative comparison of performance indicators of industrial symbiosis. Produção Online, 16(4), 1329-1348.
  66. Mantese, G. C., Bianchi, M. J., Amaral, D. C. (2018). The industrial symbiosis in the product development: An approach through the DFIS. Procedia Manufacturing, 21, 862-869.
  67. Maranesi, C., De Giovanni, P. (2020). Modern circular economy: Corporate strategy, supply chain, and industrial symbiosis. Sustainability, 12(22), 9383.
  68. Marchi, B., Zanoni, S., Zavanella, L. E. (2017). Symbiosis between industrial systems, utilities and public service facilities for boosting energy and resource efficiency. Energy Procedia, 128, 544-550.
  69. Marinelli, S., Butturi, M. A., Rimini, B., Gamberini, R., Sellitto, M. A. (2021). Estimating the Circularity Performance of an Emerging Industrial Symbiosis Network: The Case of Recycled Plastic Fibers in Reinforced Concrete. Sustainability, 13(18), 10257.
  70. Martin, M., Harris, S. (2018). Prospecting the sustainability implications of an emerging industrial symbiosis network. Resources, Conservation and Recycling, 138, 246-256.
  71. Mauthoor, S. (2017). Uncovering industrial symbiosis potentials in a small island developing state: The case study of Mauritius. Journal of Cleaner Production, 147, 506-513.
  72. Maynard, N. J., Subramanian, V. R. K., Hua, C. Y., Lo, S. F. (2020). Industrial Symbiosis in Taiwan: Case Study on Linhai Industrial Park. Sustainability, 12(11), 4564.
  73. Mileva-Boshkoska, B., Rončević, B., Džajić-Uršič, E. (2018). Modeling and evaluation of the possibilities of forming a regional industrial symbiosis networks. Social Sciences, 7(1), 13.
  74. Miller, G. T. (2001). Living in the Environment ,University of Tehran Press (in persian)
  75. Mirata, M. (2004). Experiences from early stages of a national industrial symbiosis programme in the UK: determinants and coordination challenges. Journal of Cleaner Production, 12(8-10), 967-983.
  76. Mohammadi, G., Sajjadi, S. M., Sakhdari, K. (2019). Entrepreneurial Decision-Making Model: A Meta-Synthesis Approach. Journal of Industrial Management Perspective, 9(3), 87-108. (in persian)
  77. Neves, A., Godina, R., Azevedo, S. G., Pimentel, C., Matias, J. C. O. (2019). The potential of industrial symbiosis: Case analysis and main drivers and barriers to its implementation. Sustainability, 11(24), 7095.
  78. Ntasiou, M., Andreou, E. (2017). The standard of industrial symbiosis. Environmental criteria and methodology on the establishment and operation of industrial and business parks. Procedia Environmental Sciences, 38, 744-751.
  79. Nygårdh, A., Åström, J. (2023). Unwrapping the concept of industrial symbiosis: A literature review.
  80. Oni, O. O., Nevo, C. M., Hampo, C. C., Ozobodo, K. O., Olajide, I. O., Ibidokun, A. O., ... & Ikpeama, C. C. (2022). Current status, emerging challenges, and future prospects of industrial symbiosis in Africa. International Journal of Environmental Research, 16(4), 49.‏
  81. Park, H. S., Rene, E. R., Choi, S. M., Chiu, A. S. (2018). Strategies for sustainable development of industrial park in Ulsan, South Korea—From spontaneous evolution to systematic expansion of industrial symbiosis. Journal of Environmental Management, 87(1), 1-13.
  82. Park, J., Duque-Hernández, J., Díaz-Posada, N. (2018). Facilitating business collaborations for industrial symbiosis: The pilot experience of the sustainable industrial network program in Colombia. Sustainability, 10(10), 3637.
  83. Prosman, E. J., Wæhrens, B. V. (2019). Managing waste quality in industrial symbiosis: Insights on how to organize supplier integration. Journal of Cleaner Production, 234, 113-123.
  84. Rentería Núñez, G., Perez-Castillo, D. (2023). Business Models for Industrial Symbiosis: A Literature Review. Sustainability, 15(12), 9142.
  85. Ribeiro, P., Fonseca, F., Neiva, C., Bardi, T., Lourenço, J. M. (2018). An integrated approach towards transforming an industrial park into an eco-industrial park: the case of Salaise-Sablons. Journal of Environmental Planning and Management, 61(2), 195-213.
  86. Sakr, D., Baas, L., El-Haggar, S., Huisingh, D. (2011). Critical success and limiting factors for eco-industrial parks: global trends and Egyptian context. Journal of Cleaner Production, 19(11), 1158-1169.
  87. Saleem, Q. J., Shammaa, A. N., Makki, Z. F. (2023). Eco-industrial parks in Iraq. IOP Conference Series: Earth and Environmental Science, 1129(1), 012011.
  88. Sandelowski, M., Barroso, J. (2006). Handbook for synthesizing qualitative research.
  89. Schwarz, E. J., Steininger, K. W. (1997). Implementing nature's lesson: the industrial recycling network enhancing regional development. Journal of Cleaner Production, 5(1-2), 47-56.
  90. Sellitto, M. A., Murakami, F. K. (2018). Industrial symbiosis: A case study involving a steelmaking, a cement manufacturing, and a zinc smelting plant. Chemical Engineering Transactions, 70, 211-216.
  91. Sepehri Shafigh, E., Taghizadeh, H., Iranzadeh, S. (2022). Determining causal relationships between drivers of creating and implementing industrial symbiosis in industrial parks using fuzzy DEMATEL method. Journal of Environmental Science and Technology, 24(5). (in persian).
  92. Shariat, M. A., Iranzadeh, S., Bafandeh Zendeh, A. R. (2017). Identifying and ranking effective factors in achieving sustainable production by transitioning from industrial production to ecological production (A study of private industrial production companies in Semnan province). Public Management Research, 10(37), 177-201. (in persian)
  93. Sharib, S., Halog, A. (2017). Enhancing value chains by applying industrial symbiosis concept to the Rubber City in Kedah, Malaysia. Journal of Cleaner Production, 141, 1095-1108.
  94. Shi, H., Chertow, M., Song, Y. (2010). Developing country experience with eco-industrial parks: a case study of the Tianjin Economic-Technological Development Area in China. Journal of Cleaner Production, 18(3), 191-199.
  95. Simboli, A., Taddeo, R., Morgante, A. (2015). The potential of Industrial Ecology in agri-food clusters (AFCs): A case study based on valorisation of auxiliary materials. Ecological Economics, 111, 65-75.
  96. Souza, F. F. de, Ferreira, M. B., Saraceni, A. V., Betim, L. M., Pereira, T. L., Petter, R. R. H., Pagani, R. N., Resende, L. M. M. de, Pontes, J., Piekarski, C. M. (2020). Temporal Comparative Analysis of Industrial Symbiosis in a Business Network: Opportunities of Circular Economy. Sustainability, 12(5), 1832.
  97. Stahel, W. R. (2016). The circular economy. Nature, 531(7595), 435-438.
  98. Taddeo, R., Simboli, A., Morgante, A., Erkman, S. (2017). The development of industrial symbiosis in existing contexts. Experiences from three Italian clusters. Ecological Economics, 139, 55-67.
  99. Tukker, A. (2015). Product services for a resource-efficient and circular economy–a review. Journal of Cleaner Production, 97, 76-91.
  100. Wadström, C., Johansson, M., Wallén, M. (2021). A framework for studying outcomes in industrial symbiosis. Renewable and Sustainable Energy Reviews, 151, 111526.
  101. Wang, A., Shah, N., Guo, M. (2020). Optimisation of wastewater treatment strategies in eco-industrial parks: Technology, location and transport. Chemical Engineering Journal, 381, 122643.
  102. WRAP (2017). Search Material Listings | Resource Efficient Scotland.
  103. Yazan, D. M., Yazdanpanah, V., Fraccascia, L. (2020). Learning strategic cooperative behavior in industrial symbiosis: A game-theoretic approach integrated with agent-based simulation. Business Strategy and the Environment, 1-14.
  104. Yazdanpanah, V., Yazan, D. M., Zijm, W. H. M. (2020). A Multiagent Framework for Coordinating Industrial Symbiotic Networks. CEUR Workshop Proceedings, 2692, 38-53.
  105. Yeo, Z., Masi, D., Low, J. S. C., Ng, Y. T., Tan, P. S., Barnes, S. (2019). Tools for promoting industrial symbiosis: A systematic review. Journal of Industrial Ecology, 23(5), 1087-1108.
  106. Zhang, Y., Zheng, H., Chen, B., Su, M., Liu, G. (2015). A review of industrial symbiosis research: theory and methodology. Frontiers of Earth Science, 9, 91-104.
  107. Zhu, Q., Cote, R. P. (2004). Integrating green supply chain management into an embryonic eco-industrial development: a case study of the Guitang Group. Journal of Cleaner Production, 12(8-10), 1025-1035.