نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، پردیس البرز، دانشگاه تهران.

2 استادیار، دانشگاه اراک.

3 استاد، دانشگاه تهران.

چکیده

یکی از مهم‌ترین چالش­‌های صنعت دارو، ناهماهنگی بین اعضای زنجیره تأمین است. در بیشتر موارد، اعضای زنجیره تأمین دارو اهداف متضادی را دنبال می‏کنند که بعضاً با یکدیگر و یا با کل زنجیره تأمین در تعارض است. در این مطالعه، یک مدل ریاضی چندهدفه برای زنجیره تأمین دارو در حوادث غیرمترقبه پیشنهاد شده است تا به تصمیم­‌گیری­های استراتژیک در زمان وقوع حوادث غیرمترقبه همچون سیل و زلزله کمک کند. سه هدف کمینه‌­سازی هزینه­ها، کمینه‌­سازی درصد کمبود دارو و بیشینه‌‏سازی پراکنش مراکز توزیع با رویکرد امدادرسانی بهتر در زمان وقوع حادثه در نظر گرفته شده است. مسئله با استفاده از روش ترابی ـ حصینی حل و رابطه توابع هدف با یکدیگر، با توجه به اولویت و اهمیت آن­ها، مقایسه شده است. به‌منظور بررسی عملکرد مدل و نحوه ارتباط سطوح مختلف زنجیره تأمین و فعالیت­‌ها با یکدیگر از داده‌های مرتبط با بحران وقوع زلزله در شهر تهران در سناریوهای مختلف استفاده شده است. نتایج نشان می‌‏دهد که بیشترین تقاضا در حالت فعال­‌شدن گسل ری و کمترین تقاضا مربوط به فعال شدن گسل مشا ‏است. درنهایت مشخص خواهد شد که افزایش مطلوبیت توابع هدف کمینه‏‌سازی درصد کمبود دارو و بیشینه‌‏سازی پراکنش مراکز توزیع به‌­ترتیب هزینه بیشتری را به سیستم تحمیل خواهند کرد. 

کلیدواژه‌ها

عنوان مقاله [English]

Multi-Objective Pharmaceutical Supply Chain Modeling in Disaster (Case Study: Earthquake Crisis in Tehran)

نویسندگان [English]

  • Fatemeh Alidoost 1
  • Farzad Bahrami 2
  • Hossein Safari 3

1 M.A., Alborz Campus, University of Tehran.

2 Assistant Professor, Arak University.

3 Professor, University of Tehran.

چکیده [English]

Absence of coordination between different sections of pharmaceutical supply chain has been announced as the most important challenge in the medicine industry. These sections are often in conflict and it is possible that their related decisions become suboptimal for the whole supply chain. In this study, a multi-objective mathematical model is offered for pharmaceutical supply chain problem. The model helps make strategic decisions in unexpected disaster occurences such as earthquake and flood. To improve the humanitarian relief in disaster, the model concurrently minimizes the total costs, maximizes the dispersion of distribution centers and minimizes the percentage of drug undersupply as three different objective functions. The model is solved by Torabi-Hassini approach and the performance and importance of objective functions have been compared. In order to verify the proposed model and the relations of different levels of supply chain, Tehran earthquake crisis is considered through different scenarios as the case study. The results illustrate that the highest and lowest demand is in the case of Ray and Mosha fault activation, respectively. Finally, it is shown that increasing the utility of minimizing the percentage of drug undersupply and maximizing dispersion of distribution centers inflicts higher costs on the system.

کلیدواژه‌ها [English]

  • Pharmaceutical Supply Chain
  • Disaster
  • Humanitarian Relief
  • Multi-Objective Mathematical Modeling
  • Torabi-Hassini Approach
1. Ahmadi, A., Mousazadeh, M., Torabi, A., & Pishvaee, M. (2017). Or applications in pharmaceutical supply chain management. Operations Research Applications in Health Care Management, 262, 461-491.
2. Bahadori, H., Khorshid, K., & Ebrahimnia, M. (2009). A look at crisis management in the United States. Tehran: Payame Pouya (In Persian).
3. Bahrami, F. (2016). Hub Location and Routing Multi Objective Fuzzy Mathematical Modeling in Competitive Environment. (Doctoral dissertation). University of Tehran, Tehran, Iran (In Persian).
4. Bozorgi Amir, A., Mansouri, S., & Pishvaee, M. (2017). Multi-objective Supply Chain Network Design for Responding to Earthquake Under Uncertainty. Journal of Industrial Management Perspective, 25(1), 9-36 (In Persian).
5. Dobrzykowski, D., Deilami, V., Hong, P., & Kim, S. (2014). A Structured Analysis of Operations and Supply Chain Management Research in Healthcare. International Journal of Production Economics, 147, 514-530.
6. Doudeman, M., & Bozorgi-Amiri, A. (2017). Multi-objective chain network design for responding to earthquake under uncertainty. Journal of Industrial Management Perspective, 36(4), 9-36 (In Persian).
7. Eslami, A. (2009). Revision on earthquake catalog in 20th century in Iran. Institute of Earthquake Engineering and Seismology, 21-49 (In Persian).
8. Fahimnia, B., Jabbarzadeh, A., Ghavamifar, A., & Bell, M. (2017). Supply Chain Design for Efficient and Effective Blood Supply in Disasters. International Journal of Production Economics, 183, 700-709.
9. Goodarzian, F., Hosseini-Nasab, H., Manuzuri, J., & Fakhrzad, M. (2020). A multi-objective pharmaceutical supply chain network based on a robust fuzzy model: A comparison of metaheuristics. Journal of Applied soft computing, 92, 60-73.
10. Haj Shir Mohammadi, A. (2013). Principles of manufacturing and inventory control planning. 45-99: Arkane danesh (In Persian).
11. Hatami, H., Razavi, S., Eftekhar, H., Majlesi, F., Seyednozadi, M., & Parizadeh, M. (2020). Comprehensive Public Health Book. Tehran: Ketab Arjamnd. (In Persian).
12. Iraji Nasirabadi, N. (2014). Fuzzy-Multi objective distribution programing in supply chain considering multiple transportation and risk criteria. Tehran: University of Tehran (In Persian).
13. Jabbarzadeh, A., Fahimnia, B., & Seuring, S. (2014). Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application. Transportation Research Part E: Logistics and Transportation Review, 70, 225-244.
14. JICA. (2000). The study on seismic microzoning of the Greater Tehran Area in the Islamic. Japan: OYO Cooperation.
15. Kalantari, M., & Pishvaee, S. (2016). A robust possibilistic programming approach to drug supply chain master planning. Journal of Industrial Engineering research in production system, 7, 49-67.
16. Kanani M. (2009). GSP and GDP rules and regulations in drug distribution companies, Razi Journal, 231, 63-70 (In Persian).
17. Mahllati, V., M. (2012). Management of drug supply chain at 2025.
18. Meimandi, M., Sepehri, G., FarokhiNouri, M., Mohsen BeigI, M., & Motevallizadeh, H. (2008). Drug use pattern in Bam residents in the first month after 1382 earthquake. Hakim Journal, 10(4), 27-33 (In Persian).
19. Moeinian, A., Rahimi, M., Ahmadi, F., & Peivandi, R. (2020). Investigating Natural Disasters from the Perspective of International Law; A Case Study of Iran, Scientific and Research Quarterly New Attitudes in Human Geography. Journal of New Perspectives In Humanitarian Geography, 12, 257-475 (In Persian).
20. Mousazadeh, M., Torabi, S., & Zahiri, B. (2015). A robust possibilistic programming pharmaceutical supply chain with maximum expected coverage under uncertainty. Computers & Chemical Engineering, 82, 115-128.
21. Nasrollahi, M., & Razmi, J. (2019). A mathematical model for designing an integrated pharmaceutical supply chain with maximum expected coverage under uncertainty. Operational Research, 1-28.
22. Nateghi, F. (2001). Earthquake scenario for the mega‐city of Tehran. Disaster Prevention and Management: An International Journal, 10, 95-100.
23. Nikjoo, N., & Javadian, N. (2019). A Multi-Objective Robust Optimization Logistics Model in Crisis Under Uncertainty. Journal of Industrial Management Perspective, 32, 121-147 (In Persian).
24. Roshan, M., Tavakkoli-Moghaddam, R., & Rahimi, Y. (2019). A two-stage approach to agile pharmaceutical supply chain management with product substitutability in crises. Computers & Chemical Engineering, 127, 200-217.
25. Torabi, S., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy sets and systems, 159, 193-214.
26. Zandieh, M., Janatyan, N., Alem Tabriz, A., & Rabieh, M. (2018). Designing Sustainable Distribution Network in Pharmaceutical Supply Chain: A Case Study. International Journal of Supply and Operations Managemen, 5, 122-133 (In Persian).
27. Zangiabadi, A., & Tabrizi, N. (2006). Tehran earthquake and spatial assessment of urban areas. Journal of Geographical research, 56, 116-130 (In Persian).