طراحی مدل زنجیره تامین حلقه بسته پایدار با بررسی مالیات کربن و انتخاب فناوری در صنعت باتری

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه مدیریت عملیات و فناوری اطلاعات، دانشکده مدیریت، دانشگاه خوارزمی، تهران، ایران.

چکیده

طی یک دهه گذشته نگرانی‌های زیست‌محیطی و انتظارات اجتماعی، تصمیم‌گیرندگان را مجبور کرده است تا زنجیره‌های تأمین خود را با درنظرگرفتن اثرات زیست‌محیطی و پاسخگویی و همچنین اهداف اقتصادی طراحی کنند. در پژوهش حاضر، یک مدل ریاضی عدد صحیح مختلط با بهینه‌سازی اهداف هزینه، تأثیرات زیست‌محیطی و پاسخگویی توسعه داده شده است تا در خصوص تصمیمات نرخ مالیات کربن، انتخاب نوع فناوری، مکان‌یابی و ظرفیت تسهیلات سیاست مناسبی اتخاذ شود. در این مدل هم‌زمان دو منبع ریسک اختلال و عملیاتی برای برخی پارامترها مثل تقاضا و هزینه‌ها وجود دارد که «عدم‌قطعیت ترکیبی» نامیده می‌شود. برای کنترل این نوع عدم‌­قطعیت، یک رویکرد برنامه‌ریزی تصادفی امکانی با استفاده از مفاهیم برنامه‌ریزی با محدودیت‌های اعتبار برای طراحی زنجیره تأمین حلقه­‌بسته پیشنهاد می‌شود. برای حل مدل چندهدفه از یک رویکرد برنامه‌ریزی فازی با کارایی بالا استفاده شده است. نتایج نشان می‌دهد که نرخ مالیات کربن در حدود 2000 تومان به­‌ازای هر کیلوگرم کربن عدد مناسبی است؛ همچنین برای بهبود سطح پاسخگویی، کاهش تأثیرات زیست‌محیطی و کاهش هزینه‌ها بهتر است از فناوری‌های سبز در مراکز تولید و بازیافت استفاده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Designing a Sustainable Closed-Loop Supply Chain Considering Carbon Tax and Technology Selection in the Battery Industry

نویسنده [English]

  • Mojtaba Farrokh
Assistant Professor, Department of Operations Management and Information Technology, Faculty of Management, Kharazmi University, Tehran, Iran.
چکیده [English]

Over the past decade, growing environmental concerns and social legislations have forced decision makers to design their supply chains with regard to the environmental impacts, responsiveness, and economic benefits. In this research, a mixed integer linear programming (MILP)  model is developed to optimize the objectives of cost, environmental impacts and responsiveness in order to determine appropriate policies about the decisions of carbon tax, technology selection, location, capacity of facilities. In this model, there are simultaneously two types of disruption and operational risk for some parameters such as demand and costs, which is named hybrid uncertainty. To cope with this type of uncertainty, a possibilistic stochastic programming approach using concepts of credibility constraint programming is proposed to design a closed-loop supply chain. A high-performance flexible programming approach is applied to solve the multi-objective model. Results show that the appropriate rate of carbon tax is around 20000 Rial per kilogram of carbon. The results indicate that in order to optimize the level of responsiveness and reduce the environmental impacts and costs, it is better to use the green technologies in the plants and recycling centers and to establish the plant and distribution centers near the customer zones.

کلیدواژه‌ها [English]

  • Closed Loop Supply Chain
  • Carbon Tax
  • Green Technology
  • Possibilistic Stochastic Programming
  • Responsiveness
  1. Carlsson, C., & Fullér, R. (2001). On possibilistic mean value and variance of fuzzy numbers. Fuzzy sets and systems, 122(2), 315-326.
  2. De, M., & Giri, B. C. (2020). Modelling a closed-loop supply chain with a heterogeneous fleet under carbon emission reduction policy. Transportation research part e: logistics and transportation review133, 101813.
  3. Dubois, D., & Prade, H. (1980). Systems of linear fuzzy constraints. Fuzzy Sets and Systems, 3(1), 37-48.
  4. Devika, K., Jafarian, A., & Nourbakhsh, V. (2014). Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques. European Journal of Operational Research, 235(3), 594-615.
  5. Farrokh, M., Azar, A., Jandaghi, G., & Ahmadi, E. (2018). A novel robust fuzzy stochastic programming for closed loop supply chain network design under hybrid uncertainty. Fuzzy Sets and Systems, 341, 69–91.
  6. Farrokh, M., Azar, A., & Jandaghi, G. (2016). Developing a Robust Fuzzy Programming Approach for Closed Loop Supply Chain Design. The Journal of Industrial Management Perspective6(2), 9-43.‏ (In Persian)
  7. Golpîra, H., & Javanmardan, A. (2022). Robust optimization of sustainable closed-loop supply chain considering carbon emission schemes. Sustainable Production and Consumption, 30, 640-656.
  8. Gao, J., Xiao, Z., Cao, B., & Chai, Q. (2018). Green supply chain planning considering consumer’s transportation process. Transportation research part E: logistics and transportation review109, 311-330.
  9. Guo, Y., Shi, Q., Guo, C., Li, J., You, Z., & Wang, Y. (2022). Designing a sustainable-remanufacturing closed-loop supply chain under hybrid uncertainty: Cross-efficiency sorting multi-objective optimization. Computers & Industrial Engineering, 172(PA),
  10. Haddadsisakht, A., & Ryan, S. M. (2018). Closed-loop supply chain network design with multiple transportation modes under stochastic demand and uncertain carbon. International journal of production economics195, 118-131.
  11. Hashmi, N., Jalil, S. A., & Javaid, S. (2022). A multi-objective model for closed-loop supply chain network based on carbon tax with two fold uncertainty: An application to leather industry. Computers & Industrial Engineering173, 108724.
  12. Khan, M. S., Saengon, P., Alganad, A. M. N., Chongcharoen, D., & Farrukh, M. (2020). Consumer green behaviour: An approach towards environmental sustainability. Sustainable Development28(5), 1168-1180.
  13. Keyvanshokooh, E., Ryan, S. M., & Kabir, E. (2016). Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition. European Journal of Operational Research, 249(1), 76-92.
  14. Linton, J. D., Klassen, R., & Jayaraman, V. (2007). Sustainable supply chains: An introduction. Journal of operations management, 25(6), 1075-1082.
  15. Liu, B., & Liu, Y. K. (2002). Expected value of fuzzy variable and fuzzy expected value models. Fuzzy Systems, IEEE Transactions on, 10(4), 445-450.
  16. Lin, B. (2004). Uncertainty theory: an introduction to its axiomatic foundations.
  17. Liu, B., & Iwamura, K. (1998). Chance constrained programming with fuzzy parameters. Fuzzy sets and systems94(2), 227-237.
  18. Li, X., Lu, S., Li, Z., Wang, Y., & Zhu, L. (2022). Modeling and optimization of bioethanol production planning under hybrid uncertainty: A heuristic multi-stage stochastic programming approach. Energy, 245,
  19. Mirakhorli, A. (2014). Fuzzy multi-objective optimization for closed loop logistics network design in bread-producing industries. The International Journal of Advanced Manufacturing Technology70(1), 349-362.
  20. Pradhan, B. K., Ghosh, J., Yao, Y. F., & Liang, Q. M. (2017). Carbon pricing and terms of trade effects for China and India: A general equilibrium analysis. Economic Modelling63, 60-74.
  21. Pishvaee, M. S., & Razmi, J. (2012). Environmental supply chain network design using multi-objective fuzzy mathematical programming. Applied Mathematical Modelling, 36(8), 3433-3446.
  22. Ramezani, M., Bashiri, M., & Tavakkoli-Moghaddam, R. (2013). A new multi-objective stochastic model for a forward/reverse logistic network design with responsiveness and quality level. Applied Mathematical Modelling, 37(1), 328-344.
  23. Reddy, K. N., Kumar, A., Sarkis, J., & Tiwari, M. K. (2020). Effect of carbon tax on reverse logistics network design. Computers & Industrial Engineering139, 106184.
  24. Seifbarghy, M. (2022). A multi-objective sustainable closed loop supply chain model considering suppliers evaluation and using SWARA-WASPAS method, to appear. The Journal of Industrial Management Perspective, 12(3), 63-88.‏ (In Persian).
  25. Seif Barghi, M., & Shirin Bayan, P. (2023). Fuzzy Multi-objective Production Distribution Planning by Considering CO2 Emission Cost and Solving by a Novel Fuzzy Multi-choice Goal Programming. The Journal of Industrial Management Perspective13(1), 173-198.‏ (In Persian).
  26. Soleimani, H., Chhetri, P., Fathollahi-Fard, A. M., Mirzapour Al-e-Hashem, S. M. J., & Shahparvari, S. (2022). Sustainable closed-loop supply chain with energy efficiency: Lagrangian relaxation, reformulations and heuristics. Annals of Operations Research, 1-26.
  27. Subulan, K., Taşan, A. S., & Baykasoğlu, A. (2015). A fuzzy goal programming model to strategic planning problem of a lead/acid battery closed-loop supply chain. Journal of Manufacturing Systems, 37, 243-264.
  28. Salehi-Amiri, A., Zahedi, A., Akbapour, N., & Hajiaghaei-Keshteli, M. (2021). Designing a sustainable closed-loop supply chain network for walnut industry. Renewable and Sustainable Energy Reviews141, 110821.
  29. Sahebjamnia, N., Fathollahi-Fard, A. M., & Hajiaghaei-Keshteli, M. (2018). Sustainable tire closed-loop supply chain network design: Hybrid metaheuristic algorithms for large-scale networks. Journal of cleaner production, 196, 273-296.
  30. Shen, B., Zhu, C., Li, Q., & Wang, X. (2021). Green technology adoption in textiles and apparel supply chains with environmental taxes. International Journal of Production Research59(14), 4157-4174.
  31. Tao, Y., Wu, J., Lai, X., & Wang, F. (2020). Network planning and operation of sustainable closed-loop supply chains in emerging markets: Retail market configurations and carbon policies. Transportation Research Part E: Logistics and Transportation Review144, 102131.
  32. Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets and Systems, 159(2), 193-214.
  33. Tang, C.S., 2006. Perspectives in supply chain risk management. International Journal of Production Economics, 103, 451–488.
  34. Wang, M., Wu, J., Kafa, N., & Klibi, W. (2020). Carbon emission-compliance green location-inventory problem with demand and carbon price uncertainties. Transportation Research Part E: Logistics and Transportation Review142, 102038.
  35. Yu, Z., & Khan, S. A. R. (2022). Green supply chain network optimization under random and fuzzy environment. International Journal of Fuzzy Systems24(2), 1170-1181.
  36. Zeballos, L. J., Méndez, C. A., Barbosa-Povoa, A. P., & Novais, A. Q. (2014). Multi-period design and planning of closed-loop supply chains with uncertain supply and demand. Computers & Chemical Engineering, 66, 151-164.