ارزیابی کیفیت خدمات شرکت‌های هواپیمایی با استفاده از رویکرد تصمیم‌گیری چند‌شاخصه ترکیبی در شرایط فازی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار، دانشگاه تهران.

2 دانشجوی کارشناسی ارشد، دانشگاه تهران.

3 دانشجوی دکتری، دانشگاه علامه طباطبائی.

چکیده

یکی از عوامل اصلی رقابت ­پذیری شرکت­ ها، کیفیت خدمات است و مدیران علاقه دارند آن را به‌طور دقیق اندازه ­گیری کنند تا بتوانند خود را با رقبا مقایسه نمایند. هدف پژوهش حاضر، رتبه‌بندی شرکت­های هواپیمایی کشور از منظر کیفیت خدمات ارائه‌شده به مسافران در پروازهای داخلی است. در این پژوهش ابتدا با بررسی پژوهش‌های حوزه کیفیت خدمات و با استفاده از نظرهای خبرگان، شاخص‌های سنجش کیفیت تعیین شد. سپس با بهره‌ گیری از روش FAHP این شاخص‌ها وزن‌دهی شدند. در نهایت با استفاده از روش FVIKOR و بر اساس نظرهای خبرگان، شرکت‌های هواپیمایی مورد ارزیابی قرار گرفتند. نتایج پژوهش نشان داد روش تحلیل توسعه‌ای FAHP ممکن است به نتایج اشتباهی منجر شود. از این‌رو در این پژوهش از روش وانگ و چن برای محاسبه وزن شاخص‌ها در FAHP استفاده شد. هم‌چنین این پژوهش نشان داد شاخص‌های پاسخگویی، رویه‌های جبران خسارت، رعایت ادب و تواضع کارکنان و امنیت پرواز از اهمیت بیشتری در اندازه‌گیری کیفیت خدمات برخوردارند و شرکت­های هواپیمایی برتر از نظر کیفیت خدمات، شرکت‌های «آتا»، «زاگرس» و «کاسپین» هستند.

کلیدواژه‌ها


1. Ameli, A., & Fakhimi, F. (2011). Analysis of factors affecting the loyalty of Iran Air’s Frequent Flyer passengers. Tourism Management Studies, 7(16), 163-178 (In Persian).

2. Asgharizadeh, E. (2006). Ranking Companies Based on EFQM and PROMETHEE. Human Sciences MODARES, 14(4), 59-84 (In Persian).

3. Asgharizadeh, E., Ahmadi, S. H., & Yousefi Dehbidi, Sh. (2012). Prioritizing Quality Aspects in Service Organizations: A Comparision between Compensatory and Noncompensatory Method. Industrial Management Perspective, 4(4), 107-122 (In Persian).

4. Azar, A., Zarei Mahmoodabadi, M., & Tahari Mehrjerdi, M. H. (2012). Prioritizing Factors Influencing Human Resources Productivity with Mix Aproach of MCDM and DEA. Industrial Management Perspective, 1(3), 9-25 (In Persian).

5. Chang, D. Y. (1996). Application of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649-655.

6. Chang, Y.-H; & Yeh, C.-H. (2002). A survey analysis of service quality for domestic airlines. European Journal of Operational Research. 139, 166-177.

7. Chang, Y.-H; & Yeh, C.-H. (2001). Evaluating airline competitiveness using multiattribute decision making. Omega, 29, 405-415.

8. Chen, C. T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy sets and systems, 114(1), 1-9.

9. Chen, F-Y., & Chang, Y-H. (2005). Examining airline service quality from a process perspective. Journal of Air Transport Management, 11, 79-87.

10. Chen, I. S. (2016). A combined MCDM model based on DEMATEL and ANP for the selection of airline service quality improvement criteria: A study based on the Taiwanese airline industry. Journal of Air Transport Management, 57, 7-18.

11. Chen, J. K., & Chen, I. S. (2013). A theory of innovation resource synergy. Innovation, 15, 368-392.

12. Chen, S. J., Hwang, C. L., & Hwang, F. P. (1992). Fuzzy multiple attribute decision making: Methods and applications. Springer-VerlagNew York, Inc. Secaucus, NJ, USA.

13. Delbari, S. A. (2016). An investigation of key competitiveness indicators and drivers of fullservice airlines using Delphi and AHP techniques. Journal of Air Transport Management, 52, 23-34.

14. Deveci, M., Özcan, E., John, R., & Öner, S. C. (2018). Interval type-2 hesitant fuzzy set method for improving the service quality of domestic airlines in Turkey. Journal of Air Transport Management, 69, 83-98.

15. Fardanews, Statistics of Amazing Growth of Aviation in IRAN.18/11.2016. Access Date: 4/4/2017 from: http://www.fardanews.com/fa/news/591529.

16. Farsijani, H., & Zandi, O. (2010). Explanation and Measuring Service Quality Strategic Model. Journal of Strategic Management Studies, 1(1), 69-94 (In Persian).

17. Feizi, K., & Tatari, S. (2004). Service Quality Improvement in I.R. Iran Air Flights (A survey based On Serv. Qual. Model). Tourism Management Studies, 2(5), 53-85 (In Persian).

18. Ghodratian Kashan, S. A., & Rostami, A. A. (2004). Designing a Comprehensive Model for Companies Performance Evaluating and Ranking. Human Sciences MODARES, 8(36), 109-134 (In Persian).

19. Gupta, H. (2018). Evaluating service quality of airline industry using hybrid best worst method and VIKOR. Journal of Air Transport Management, 68, 35-47.

20. Habibi, A. (2004). Multi Criteria Decision Making. GIL publishing, Tehran (In Persian).

21. Haghighat, N. (2017). Proposing a framework for airline service quality evaluation using Type-2 Fuzzy TOPSIS and non-parametric analysis. Journal of Sustainable Development of Transport and Logistics, 2(2), 6-25.

22. Huang, C., Shyu, J. Z., & Tzeng, G. (2007). Reconfiguring the innovation policy portfolios for Taiwan's SIP mall industry. Technovation, 27, 744-765.

23. Iran Civil Aviation Organization. (2016). Statistic book of Country Aviation year 2015. Tehran (In Persian).

24. Irvani, T., Atashgar, K. (2105). Review and Evaluating of Service Quality Measuring Models. Annual Confrence on management and Business Economy (In Persian).

25. Kuo, M. S. et al. (2011). A novel interval-valued fuzzy MCDM method for improving airlines service quality in Chinese cross-strait airlines. Transportation Research Part, E 47, 1177-1193.

26. Kurtulmusoglu, F. B. et al. (2016). A voice in the skies: Listening to airline passenger preferences. Journal of Air Transport Management, 57, 130-137.

27. Li, W., Yu, S., Pei, H., Zhao, C., & Tian, B. (2017). A hybrid approach based on fuzzy AHP and 2-tuple fuzzy linguistic method for evaluation in-flight service quality. Journal of Air Transport Management, 60, 49-64.

28. Lim, S. S., & Tkaczynski, A. (2017). Origin and money matter: The airline service quality expectations of international students. Journal of Hospitality and Tourism Management, 31, 244-252.

29. Liou, J.J.H., & Tzeng, G. (2007). A non-additive model for evaluating airline service quality. J. Air Transp. Manag. 13, 131-138.

30. Mashayekh, Sh., & Shahrokhi, S. S. (2015). The Worldwide System of Corporate Credit Rating.Journal of "Accounting Research", 5(1), 131-148 (In Persian).

31. Nayeb, A., Jabari, S., & Yousefi Nejad Attari, M. (2014). A Combination of Factor Analysis and Combined Approach Techniques (AHP-TOPSIS) For Ranking Criteria and Evaluating the Factors Affecting Brand. Journal Management Systems, 10(33), 1-14 (In Persian).

32. Noorvash, I., Zakeri, H., & Salami, H. (2010). Ranking Creterias of Evluating successful Companies (Presenting AN Aproach in Choosing MCDM Method). Journal of Entrepreneurship Development, 3(1), 171-163 (In Persian).

33. Opricovic, S. (2000). Fuzzy VIKOR with an application to water resources planning. Expert Systems with Applications, 38, 12983-12990.

34. Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European journal of operational research, 156(2), 445-455.

35. Parasuraman, A., Zeithaml, V. A. & Berry, L. L. (1988). SERVQUAL: a multiple item scale for measuring consumer perception of service quality. Journal of Retailing, 11(1), 12-17.

36. Parasureman, A. (1998). Customer service in business-to- business markets: an ageneda for research. Journal os business and industrial marketing, 13(4/5), 309-321.

37. Perçin, S. (2018). Evaluating airline service quality using a combined fuzzy decision-making approach. Journal of Air Transport Management, 68, 48-60.

38. Saaty, T. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation, ISBN 0-07-054371-2, McGraw-Hil.

39. Shahbandzadeh, H., & Paykam, A. R. (2015). Employment of a Weighted Fuzzy Multi-Objective Programming Model to Determine the Amount of Optimum Purchasing from Suppliers. Industrial Management Perspective. 5(2), 129-152.

40. Singh, A. K. (2016). Competitive service quality benchmarking in airline industry using AHP. Benchmarking: An International Journal, 23(4), 768-791.

41. Taghizadeh Yazdi, M. R., Bagheri, F., & Dehghan Naser Abdi, A. R. (2015). Identification and prioritization of the tourism industry's target markets using Multi Attribute Decision Making Approach in a fuzzy environment.Journal of Business Managemen, 7(2), 281-306 (In Persian).

42. Tavassoli, M. et al. (2016). Performance assessment of airlines using range-adjusted measure strong complementary slackness condition, and discriminant analysis. Journal of Air Transport Management, 54, 42-46.

43. Tolouei Ashlaghi, A., & Biglari, E. (2010). Presented a dynamic Model to simulate the Balanced Score Card with the goal of efficient Strategies (Case study: Mahan air). IAU Journal of Management Acountanting, 3(30), 89-103 (In Persian).

44. Tsaur, S. H. et al. (2002). The evaluation of airline service quality by fuzzy MCDM. Tourism Management, 23, 107-115.

45. Tzeng, G., Chiang, C., & Li, C. (2007). Evaluating intertwined effects in e-learning programs: a novel hybrid MCDM model based on factor analysis and DEMATEL. Expert Syst. Appl. 32, 1028-1044.

46. Wang, R. (2011). Evaluation of customer perceptions on airline service quality in uncertainty. Procedia - Social and Behavioral Sciences, 25, 419-437.

47. Wang, T. C. & Chen, Y. H. (2008). Applying fuzzy linguistic preference relations to the improvement of consistency of fuzzy AHP. Information Sciences, 178(19), 3755-3765.

48. Wang, Y. M., Luo, Y. & Hua, Z. (2008). On the extent analysis method for fuzzy AHP and its applications. European Journal of Operational Research, 186(2), 735-747.

49. Wu, H. Y., Chen, J. K., & Chen, I. S. )2012(. Performance evaluation of aircraft maintenance staff using a fuzzy MCDM approach. Int. J. Innov. Comput. Inf. Contr. 8, 3919-3937.

50. Yari, J. (2011). Evaluating and Ranking Insurance Companies in Iran: Visions andChallenges.Insurance World Updates, 144. 33-51 (In Persian).

51. Zhu, K. J. (2014). Fuzzy analytic hierarchy process: Fallacy of the popular methods. European Journal of Operational Research, 236, 209-217.

52. Zhu, K. J., Jing, Y., & Chang, D. Y. (1999). A discussion on extent analysis method and applications of fuzzy AHP. European Journal of Operational Research, 116(2), 450-456.