ترکیب روش فرآیند تحلیل شبکه ‏ای و تصمیم‏ گیری چندهدفه به‌منظور پیش‏بینی و کاهش ریسک‌های آتی تأمین‌کنندگان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مدیریت صنعتی، واحد نجف‏آباد، دانشگاه آزاد اسلامی، نجف‏آباد، ایران.

2 استادیار، گروه مدیریت صنعتی، واحد نجف‏آباد، دانشگاه آزاد اسلامی، نجف‏آباد، ایران.

چکیده

ریسک‌های اساسی تأمین‌کنندگان پیچیدگی و آسیب‌پذیری زنجیره تأمین را افزایش می­ دهد و گاهی سبب بروز اختلال در تأمین مواد می ‏شود؛ بنابراین باید این ریسک‌ها را پیش‏بینی کرد و با ارائه راهکارهایی از قبل آماده مواجهه با آن‌ها شد. در این پژوهش به شناسایی ریسک‌های مختل‏ کننده در زنجیره تأمین «شرکت فولاد مبارکه» و سپس کاهش اثرات احتمالی آن‌ها برای چهار دوره آتی پرداخته شده است. با توجه به نظر خبرگان شرکت، الکترود گرافیتی، استراتژیک‌ ترین ماده موردنیاز شرکت و ریسک‌های مرتبط با تأمین آن مهم‌ترین ریسک‌های مختل‏ کننده زنجیره تأمین شناسایی شد. وزن این ریسک‌ها با روش ANP به­دست آمد که مهم‌ترین ریسک، ریسک عدم­ انعطاف‏ پذیری تأمین‌کنندگان با وزن 5436/0 تعیین گردید. سایر ریسک‌ها با توجه به اهمیت آن‌ها به‌ترتیب ریسک زمان تحویل طولانی سفارش ­ها، ریسک کیفیت پایین و ریسک افزایش قیمت با وزن‌های 1911/0، 1716/0 و 0937/0 بودند. سپس یک مدل بهینه‏ سازی با اهداف چهارگانه طراحی شد که هر تابع هدف درصدد حداقل ‏سازی یکی از ریسک‌های شناسایی شده بود. درنهایت مدل بهینه ‏سازی اهداف چندگانه با دو روش اولویت مطلق و برنامه‏ریزی آرمانی حل و نتایج آن‌ها با هم مقایسه شد.

کلیدواژه‌ها


1. Adeli, M., Zandieh, M. (2013). Presenting a simulation of optimization multi-objective approach for sourcing model and decision of integrating inventories. Journal of Industrial Management Perspective, 11, 89-110 (In Persian).

2. Aghajani, H., Samadi Miarkolaei, H., Farmanzadeh, M. (2014). Investigation and Evaluation of Supply Chain Resilience with Fuzzy Logic Approach (Empirical Evidence: Automobile Parts Manufacturing Industry in Mazandaran Province). Journal of Industrial Management Faculty of Humanities, 27, 83-94 (In Persian).

3. Azhmyakov, V., Fernández-Gutiérrez, J. P., & Gadi, S. K. (2016). A Novel Numerical Approach to the MCLP Based Resilient Supply Chain Optimization. IFAC-PapersonLine, 49(31), 137-142.

4. Barroso, A. P., Machado, V. H., & Machado, V. C. (2011). Supply chain resilience using the mapping approach. In Supply chain management. InTech.

5. Bittante, A., Pettersson, F., & Saxén, H. (2018). Optimization of a small-scale LNG supply chain. Energy, 148, 79-89.

6. Brusset, X., & Teller, C. (2017). Supply chain capabilities, risks, and resilience. International Journal of Production Economics, 184, 59-68.

7. Bunderson, J.S., & Sutcliffe, K.M. (2002). Comparing alternative conceptualization of functional diversity in management teams: process and performance effects. Academy of Management Journal, 45, 847-93.

8. Carvalho, H., & Machado, V. C. (2007). Designing principles to create resilient supply chains. In IIE Annual Conference. Proceedings (p. 186). Institute of Industrial and Systems Engineers (IISE).

9. Christopher, M., & Peck, H. (2004). Building the resilient supply chain. The international journal of logistics management, 15(2), 1-14.

10. Christopher, M. (2005). Managing risk in the supply chain. Supply Chain Practice, 7(2), 4.

11. Das, K. (2018). Integrating resilience in a supply chain planning model. International Journal of Quality & Reliability Management, 35(3), 570-595.

12. Datta, P. P., Christopher, M., & Allen, P. (2007). Agent-based modelling of complex production/distribution systems to improve resilience. International Journal of Logistics Research and Applications, 10(3), 187-203.

13. De Jong, S., Hoefnagels, R., Wetterlund, E., Pettersson, K., Faaij, A., & Junginger, M. (2017). Cost optimization of biofuel production–The impact of scale, integration, transport and supply chain configurations. Applied energy, 195, 1055-1070.

14. Falasca, M., Zobel, C. W., & Cook, D. (2008, May). A decision support framework to assess supply chain resilience. In Proceedings of the 5th International ISCRAM Conference (pp. 596-605).

15. Gaonkar, R. S., & Viswanadham, N. (2007). Analytical framework for the management of risk in supply chains. IEEE Transactions on automation science and engineering, 4(2), 265-273.

16. Ghazanfari, M., Riazi, A., Kazemi, M. (2001). Supply Chain Management. Journal of Tadbir, 117, 20-27 (In Persian).

17. Jabbarzadeh, A., Fahimnia, B., Sheu, J. B., & Moghadam, H. S. (2016). Designing a supply chain resilient to major disruptions and supply/demand interruptions. Transportation Research Part B: Methodological, 94, 121-149.

18. Ji, G., & Zhu, C. (2008, June). Study on supply chain disruption risk management strategies and model. In Service Systems and Service Management, 2008 International Conference on (pp. 1-6). IEEE.

19. Jüttner, U., & Maklan, S. (2011). Supply chain resilience in the global financial crisis: an empirical study. Supply Chain Management: An International Journal, 16(4), 246-259.

20. Kamalahmadi, M., & Parast, M. M. (2016). A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research. International Journal of Production Economics, 171, 116-133.

21. Kim, Y., Chen, Y. S., & Linderman, K. (2015). Supply network disruption and resilience: A network structural perspective. Journal of operations Management, 33, 43-59.

22. Maheshwari, P., Singla, S., & Shastri, Y. (2017). Resiliency optimization of biomass to biofuel supply chain incorporating regional biomass pre-processing depots. Biomass and bioenergy, 97, 116-131.

23. Margolis, J. T., Sullivan, K. M., Mason, S. J., & Magagnotti, M. (2018). A multi-objective optimization model for designing resilient supply chain networks. International Journal of Production Economics, 204, 174-185.

24. Mavi, R. K., Goh, M., & Mavi, N. K. (2016). Supplier selection with Shannon entropy and fuzzy TOPSIS in the context of supply chain risk management. Procedia-Social and Behavioral Sciences, 235, 216-225.

25. Melnyk, S. A., Closs, D. J., Griffis, S. E., Zobel, C. W., and Macdonald, J. R. (2014). Understanding supply chain resilience. Supply Chain Management Review, 18(1), 34-41.

26. Mori, M., Kobayashi, R., Samejima, M., & Komoda, N. (2017). Risk-cost optimization for procurement planning in multi-tier supply chain by Pareto Local Search with relaxed acceptance criterion. European Journal of Operational Research, 261(1), 88-96.

27. Nguyen, D. H., & Chen, H. (2018). Supplier selection and operation planning in biomass supply chains with supply uncertainty. Computers & Chemical Engineering, 118, 103-117.

28. Pettit, T.J., Fiksel, J., Croxton, K.L. (2008). Ensuring supply chain resilience: Development of a conceptual framework. Journal of Business Logistics banner, 31(1), 1-21.

29. Pickett, C. (2006). Prepare for supply chain disruptions before they hit. Logistics Today, 47(6), 22-25.

30. Ponomarov, S. Y., & Holcomb, M. C. (2009). Understanding the concept of supply chain resilience. The international journal of logistics management, 20(1), 124-143.

31. Ponis, S. T., & Koronis, E. (2012). Supply chain resilience: definition of concept and its formative elements. Journal of Applied Business Research, 28(5), 921.

32. Rabieh, M., Azar, A., Modarres Yazdi, M., Fetanatfard Haghighi, M. (2011). Designing a robust multi–objective mathematical model of sourcing: an approach to reducing supply chain risks (Case study: Iran khodro supply chain). Journal of Industrial Management Perspective, 1, 57-77 (In Persian).

33. Rice, J. B., & Caniato, F. (2003). Building a secure and resilient supply network. Supply Chain Management Review, 7(5), 22-30.

34. Roberta Pereira, C., Christopher, M., & Lago Da Silva, A. (2014). Achieving supply chain resilience: the role of procurement. Supply Chain Management: an international journal, 19(5/6), 626-642.

35. Sampat, A. M., Martin, E., Martin, M., & Zavala, V. M. (2017). Optimization formulations for multi-product supply chain networks. Computers & Chemical Engineering, 104, 296-310.

36. Sheffi, Y. (2005). The resilient enterprise: overcoming vulnerability for competitive advantage. MIT Press Books, 1.

37. Soren, A., & Shastri, Y. (2018). Optimization based design of a resilient biomass to energy system. In Computer Aided Chemical Engineering, 43, 797-802.

38. Talebi, D., Ayron, F. (2015). Identifying supply chain risks and selecting suppliers using the network analysis process (The case study: Automobile industry). Journal of Industrial Management Perspective, 17, 31-43 (In Persian).

39. Tang, C. S. (2006). Robust strategies for mitigating supply chain disruptions. International Journal of Logistics: Research and Applications, 9(1), 33-45.

40. Zhang, C., Nemhauser, G., Sokol, J., Cheon, M. S., & Keha, A. (2018). Flexible solutions to maritime inventory routing problems with delivery time windows. Computers & Operations Research, 89, 153-162.

41. Zhao, S., Liu, X., & Zhuo, Y. (2017). Hybrid Hidden Markov Models for resilience metrics in a dynamic infrastructure system. Reliability Engineering & System Safety, 164, 84-97.